试图围绕如何表示渐变以及autograd如何工作:
import torch
from torch.autograd import Variable
x = Variable(torch.Tensor([2]), requires_grad=True)
y = x * x
z = y * y
z.backward()
print(x.grad)
#Variable containing:
#32
#[torch.FloatTensor of size 1]
print(y.grad)
#None
Run Code Online (Sandbox Code Playgroud)
为什么它不会产生渐变y?如果y.grad = dz/dy,那么它不应该至少产生一个变量y.grad = 2*y吗?
T. *_*arf 14
默认情况下,仅为叶子变量保留渐变.非叶子变量的梯度不会被保留以便稍后检查.这是通过设计完成的,以节省内存.
-soumith chintala
请参阅:https://discuss.pytorch.org/t/why-cant-i-see-grad-of-an-intermediate-variable/94
呼叫 y.retain_grad()
x = Variable(torch.Tensor([2]), requires_grad=True)
y = x * x
z = y * y
y.retain_grad()
z.backward()
print(y.grad)
#Variable containing:
# 8
#[torch.FloatTensor of size 1]
Run Code Online (Sandbox Code Playgroud)
资料来源:https://discuss.pytorch.org/t/why-cant-i-see-grad-of-an-intermediate-variable/94/16
注册a hook,这基本上是计算该梯度时调用的函数.然后你可以保存,分配,打印,无论......
from __future__ import print_function
import torch
from torch.autograd import Variable
x = Variable(torch.Tensor([2]), requires_grad=True)
y = x * x
z = y * y
y.register_hook(print) ## this can be anything you need it to be
z.backward()
Run Code Online (Sandbox Code Playgroud)
输出:
Variable containing: 8 [torch.FloatTensor of size 1
Run Code Online (Sandbox Code Playgroud)
资料来源:https://discuss.pytorch.org/t/why-cant-i-see-grad-of-an-intermediate-variable/94/2
另见:https://discuss.pytorch.org/t/why-cant-i-see-grad-of-an-intermediate-variable/94/7
| 归档时间: |
|
| 查看次数: |
2921 次 |
| 最近记录: |