给出一个数字列表,如下所示:
lst = [0, 10, 15, 17]
我想有从元素的列表i -> i + 3的所有i在lst.如果有重叠的范围,我希望它们合并.
所以,对于上面的例子,我们首先得到:
[0, 1, 2, 3,     10, 11, 12, 13,     15, 16, 17, 18,   17, 18, 19, 20]
但对于最后两组,范围重叠,因此在合并它们时,您有:
[0, 1, 2, 3,     10, 11, 12, 13,     15, 16, 17, 18,     19, 20]
这是我想要的输出.
这就是我的想法:
from collections import OrderedDict
res = list(OrderedDict.fromkeys([y for x in lst for y in range(x, x + 4)]).keys())
print(res) = [0, 1, 2, 3, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20]
但是,这很慢(10000 loops, best of 3: 56 µs per loop).如果可能的话,我想要一个numpy解决方案,或者比这更快的python解决方案.
方法#1:一种基于broadcasted求和然后np.unique用于获得唯一数字的方法 -
np.unique(np.asarray(lst)[:,None] + np.arange(4))
方法#2:另一种方法基于广播总和然后掩盖 -
def mask_app(lst, interval_len = 4):
    arr = np.array(lst)
    r = np.arange(interval_len)
    ranged_vals = arr[:,None] + r
    a_diff = arr[1:] - arr[:-1]
    valid_mask = np.vstack((a_diff[:,None] > r, np.ones(interval_len,dtype=bool)))
    return ranged_vals[valid_mask]
运行时测试
原创方法 -
from collections import OrderedDict
def org_app(lst):
    list(OrderedDict.fromkeys([y for x in lst for y in range(x, x + 4)]).keys())
计时 -
In [409]: n = 10000
In [410]: lst = np.unique(np.random.randint(0,4*n,(n))).tolist()
In [411]: %timeit org_app(lst)
     ...: %timeit np.unique(np.asarray(lst)[:,None] + np.arange(4))
     ...: %timeit mask_app(lst, interval_len = 4)
     ...: 
10 loops, best of 3: 32.7 ms per loop
1000 loops, best of 3: 1.03 ms per loop
1000 loops, best of 3: 671 µs per loop
In [412]: n = 100000
In [413]: lst = np.unique(np.random.randint(0,4*n,(n))).tolist()
In [414]: %timeit org_app(lst)
     ...: %timeit np.unique(np.asarray(lst)[:,None] + np.arange(4))
     ...: %timeit mask_app(lst, interval_len = 4)
     ...: 
1 loop, best of 3: 350 ms per loop
100 loops, best of 3: 14.7 ms per loop
100 loops, best of 3: 9.73 ms per loop
两个贴出的方法的瓶颈似乎是转换为array,虽然这似乎后来很好.只是为了了解最后一个数据集转换所花费的时间 - 
In [415]: %timeit np.array(lst)
100 loops, best of 3: 5.6 ms per loop