如何处理Spark和Scala中的异常

Luc*_*ess 4 scala exception-handling apache-spark

我正在尝试处理Spark中的常见异常,例如.map操作无法正确处理数据的所有元素或FileNotFound异常.我已阅读所有现有问题和以下两个帖子:

https://rcardin.github.io/big-data/apache-spark/scala/programming/2016/09/25/try-again-apache-spark.html

https://www.nicolaferraro.me/2016/02/18/exception-handling-in-apache-spark

我在行内尝试了一个Try语句,attributes => mHealthUser(attributes(0).toDouble, attributes(1).toDouble, attributes(2).toDouble
因此它会读取attributes => Try(mHealthUser(attributes(0).toDouble, attributes(1).toDouble, attributes(2).toDouble)

但这不会编译; 编译器.toDF()以后不会识别该语句.我也尝试了类似Java的Try {Catch {}}块但无法正确获取范围; df然后不归还.有谁知道如何正确地做到这一点?我甚至需要处理这些异常,因为Spark框架似乎已经处理了FileNotFound异常,而我没有添加一个异常.但是,如果输入文件的列数错误,我想生成模式中字段数的错误.

这是代码:

object DataLoadTest extends SparkSessionWrapper {
/** Helper function to create a DataFrame from a textfile, re-used in        subsequent tests */
def createDataFrame(fileName: String): DataFrame = {

import spark.implicits._

//try {
val df = spark.sparkContext
  .textFile("/path/to/file" + fileName)
  .map(_.split("\\t"))
//mHealth user is the case class which defines the data schema
  .map(attributes => mHealthUser(attributes(0).toDouble, attributes(1).toDouble, attributes(2).toDouble,
        attributes(3).toDouble, attributes(4).toDouble,
        attributes(5).toDouble, attributes(6).toDouble, attributes(7).toDouble,
        attributes(8).toDouble, attributes(9).toDouble, attributes(10).toDouble,
        attributes(11).toDouble, attributes(12).toDouble, attributes(13).toDouble,
        attributes(14).toDouble, attributes(15).toDouble, attributes(16).toDouble,
        attributes(17).toDouble, attributes(18).toDouble, attributes(19).toDouble,
        attributes(20).toDouble, attributes(21).toDouble, attributes(22).toDouble,
        attributes(23).toInt))
  .toDF()
  .cache()
df
} catch {
    case ex: FileNotFoundException => println(s"File $fileName not found")
    case unknown: Exception => println(s"Unknown exception: $unknown")

}
}
Run Code Online (Sandbox Code Playgroud)

所有建议都赞赏.谢谢!

小智 13

另一种选择是在scala中使用Try类型.

例如:

def createDataFrame(fileName: String): Try[DataFrame] = {

try {
      //create dataframe df
      Success(df)
    } catch {
      case ex: FileNotFoundException => {
        println(s"File $fileName not found")
        Failure(ex)
      }
      case unknown: Exception => {
        println(s"Unknown exception: $unknown")
        Failure(unknown)
      }
    }
  }
Run Code Online (Sandbox Code Playgroud)

现在,在调用者方面,处理它像:

createDataFrame("file1.csv") match {
  case Success(df) => {
    // proceed with your pipeline
  }
  case Failure(ex) => //handle exception
}
Run Code Online (Sandbox Code Playgroud)

这比使用Option略好,因为调用者会知道失败的原因并且可以更好地处理.