Luc*_*ess 4 scala exception-handling apache-spark
我正在尝试处理Spark中的常见异常,例如.map操作无法正确处理数据的所有元素或FileNotFound异常.我已阅读所有现有问题和以下两个帖子:
https://www.nicolaferraro.me/2016/02/18/exception-handling-in-apache-spark
我在行内尝试了一个Try语句,attributes => mHealthUser(attributes(0).toDouble, attributes(1).toDouble, attributes(2).toDouble
因此它会读取attributes => Try(mHealthUser(attributes(0).toDouble, attributes(1).toDouble, attributes(2).toDouble)
但这不会编译; 编译器.toDF()
以后不会识别该语句.我也尝试了类似Java的Try {Catch {}}块但无法正确获取范围; df
然后不归还.有谁知道如何正确地做到这一点?我甚至需要处理这些异常,因为Spark框架似乎已经处理了FileNotFound异常,而我没有添加一个异常.但是,如果输入文件的列数错误,我想生成模式中字段数的错误.
这是代码:
object DataLoadTest extends SparkSessionWrapper {
/** Helper function to create a DataFrame from a textfile, re-used in subsequent tests */
def createDataFrame(fileName: String): DataFrame = {
import spark.implicits._
//try {
val df = spark.sparkContext
.textFile("/path/to/file" + fileName)
.map(_.split("\\t"))
//mHealth user is the case class which defines the data schema
.map(attributes => mHealthUser(attributes(0).toDouble, attributes(1).toDouble, attributes(2).toDouble,
attributes(3).toDouble, attributes(4).toDouble,
attributes(5).toDouble, attributes(6).toDouble, attributes(7).toDouble,
attributes(8).toDouble, attributes(9).toDouble, attributes(10).toDouble,
attributes(11).toDouble, attributes(12).toDouble, attributes(13).toDouble,
attributes(14).toDouble, attributes(15).toDouble, attributes(16).toDouble,
attributes(17).toDouble, attributes(18).toDouble, attributes(19).toDouble,
attributes(20).toDouble, attributes(21).toDouble, attributes(22).toDouble,
attributes(23).toInt))
.toDF()
.cache()
df
} catch {
case ex: FileNotFoundException => println(s"File $fileName not found")
case unknown: Exception => println(s"Unknown exception: $unknown")
}
}
Run Code Online (Sandbox Code Playgroud)
所有建议都赞赏.谢谢!
小智 13
另一种选择是在scala中使用Try类型.
例如:
def createDataFrame(fileName: String): Try[DataFrame] = {
try {
//create dataframe df
Success(df)
} catch {
case ex: FileNotFoundException => {
println(s"File $fileName not found")
Failure(ex)
}
case unknown: Exception => {
println(s"Unknown exception: $unknown")
Failure(unknown)
}
}
}
Run Code Online (Sandbox Code Playgroud)
现在,在调用者方面,处理它像:
createDataFrame("file1.csv") match {
case Success(df) => {
// proceed with your pipeline
}
case Failure(ex) => //handle exception
}
Run Code Online (Sandbox Code Playgroud)
这比使用Option略好,因为调用者会知道失败的原因并且可以更好地处理.