如何从pandas DataFrame中绘制timedelta数据?

Sac*_*eni 2 python plot pandas

我试图绘制一个系列(数据帧中的列是精确的).它似乎有格式为hh:mm:ss(timedelta64)的有效数据

In [14]: x5.task_a.describe()
Out[14]: 
count                       165
mean     0 days 03:35:41.121212
std      0 days 07:07:40.950819
min             0 days 00:00:06
25%             0 days 00:37:13
50%             0 days 01:28:17
75%             0 days 03:41:32
max             2 days 12:32:26
Name: task_a, dtype: object

In [15]: x5.task_a.head()
Out[15]: 
wbdqueue_id
26868   00:26:11
26869   02:08:28
26872   00:26:07
26874   00:48:22
26875   00:26:17
Name: task_a, dtype: timedelta64[ns]
Run Code Online (Sandbox Code Playgroud)

但是当我尝试绘制它时,我得到一个错误,说空的'DataFrame'中没有数字数据.我试过:x5.task_a.plot.kde()和x5.plot()其中x5是DataFrame,包含几个系列的timedelta数据.

TypeError: Empty 'DataFrame': no numeric data to plot
Run Code Online (Sandbox Code Playgroud)

我看到一个人可以生成一系列随机值并绘制它.

我究竟做错了什么?

Zer*_*ero 6

转换为任何逻辑数值,如小时或分钟,然后使用 .plot.kde()

(x5.task_a / np.timedelta64(1, 'h')).plot.kde()
Run Code Online (Sandbox Code Playgroud)

细节

In [149]: x5
Out[149]:
                  task_a
0 0 days 22:27:46.684800
1 1 days 00:20:43.036800
2 0 days 12:16:24.873600
3 1 days 11:10:14.880000
4 1 days 03:31:05.548800
5 1 days 05:20:52.944000
6 1 days 00:09:09.590400
7 0 days 13:53:50.179200
8 1 days 04:08:57.695999
9 0 days 14:14:53.088000

In [150]: x5.task_a / np.timedelta64(1, 'h')  # convert to hours
Out[150]:
0    22.462968
1    24.345288
2    12.273576
3    35.170800
4    27.518208
5    29.348040
6    24.152664
7    13.897272
8    28.149360
9    14.248080
Name: task_a, dtype: float64
Run Code Online (Sandbox Code Playgroud)

或分钟

In [151]: x5.task_a / np.timedelta64(1, 'm')
Out[151]:
0    1347.77808
1    1460.71728
2     736.41456
3    2110.24800
4    1651.09248
5    1760.88240
6    1449.15984
7     833.83632
8    1688.96160
9     854.88480
Name: task_a, dtype: float64
Run Code Online (Sandbox Code Playgroud)

另一种方式使用 total_seconds

In [153]: x5.task_a.dt.total_seconds() / 60
Out[153]:
0    1347.77808
1    1460.71728
2     736.41456
3    2110.24800
4    1651.09248
5    1760.88240
6    1449.15984
7     833.83632
8    1688.96160
9     854.88480
Name: task_a, dtype: float64
Run Code Online (Sandbox Code Playgroud)