如何处理UserWarning:将稀疏的IndexedSlices转换为未知形状的密集Tensor

ryu*_*nho 8 python tensorflow

我在Tensorflow中收到以下警告:UserWarning:将稀疏的IndexedSlices转换为未知形状的密集Tensor.这可能会消耗大量内存.

我得到这个的原因是:

import tensorflow as tf
# Flatten batch elements to rank-2 tensor where 1st max_length rows 
    #belong to first batch element and so forth
all_timesteps = tf.reshape(raw_output, [-1, n_dim])  # (batch_size*max_length, n_dim)
# Indices to last element of each sequence.
# Index to first element is the sequence order number times max 
    #sequence length.
# Index to last element is the index to first element plus sequence 
    #length.
row_inds = tf.range(0, batch_size) * max_length + (seq_len - 1)
# Gather rows with indices to last elements of sequences
# http://stackoverflow.com/questions/35892412/tensorflow-dense-gradient-explanation
# This is due to gather returning IndexedSlice which is later 
    #converted into a Tensor for gradient
# calculation.
last_timesteps = tf.gather(all_timesteps, row_inds)  # (batch_size,n_dim)  
Run Code Online (Sandbox Code Playgroud)

tf.gather导致了这个问题.直到现在我一直忽略它,因为我的架构不是很大.但是,现在,我拥有更大的架构和大量数据.当批量大于10的训练时,我面临内存不足的问题.我相信处理这个警告可以让我的模型适合GPU.

请注意,我使用的是Tensorflow 1.3.

ryu*_*nho 5

我设法通过使用tf.dynnamic_partition而不是tf.gather解决了这个问题。我这样替换了上面的代码:

# Flatten batch elements to rank-2 tensor where 1st max_length rows belong to first batch element and so forth
all_timesteps = tf.reshape(raw_output, [-1, n_dim])  # (batch_size*max_length, n_dim)
# Indices to last element of each sequence.
# Index to first element is the sequence order number times max sequence length.
# Index to last element is the index to first element plus sequence length.
row_inds = tf.range(0, batch_size) * max_length + (seq_len - 1)
# Creating a vector of 0s and 1s that will specify what timesteps to choose.
partitions = tf.reduce_sum(tf.one_hot(row_inds, tf.shape(all_timesteps)[0], dtype='int32'), 0)
# Selecting the elements we want to choose.
last_timesteps = tf.dynamic_partition(all_timesteps, partitions, 2)  # (batch_size, n_dim)
last_timesteps = last_timesteps[1]
Run Code Online (Sandbox Code Playgroud)

  • 我是屏蔽 rcnn 的新手,你在哪里添加了这些代码行...请帮助 (3认同)