Bob*_*ain 15 count distinct-values window-functions pyspark
我刚尝试在窗口上执行countDistinct并出现此错误:
AnalysisException: u'Distinct window functions are not supported: count(distinct color#1926)
Run Code Online (Sandbox Code Playgroud)
有没有办法在pyspark中对窗口进行明确计数?
这是一些示例代码:
from pyspark.sql.window import Window
from pyspark.sql import functions as F
#function to calculate number of seconds from number of days
days = lambda i: i * 86400
df = spark.createDataFrame([(17, "2017-03-10T15:27:18+00:00", "orange"),
(13, "2017-03-15T12:27:18+00:00", "red"),
(25, "2017-03-18T11:27:18+00:00", "red")],
["dollars", "timestampGMT", "color"])
df = df.withColumn('timestampGMT', df.timestampGMT.cast('timestamp'))
#create window by casting timestamp to long (number of seconds)
w = (Window.orderBy(F.col("timestampGMT").cast('long')).rangeBetween(-days(7), 0))
df = df.withColumn('distinct_color_count_over_the_last_week', F.countDistinct("color").over(w))
df.show()
Run Code Online (Sandbox Code Playgroud)
这是我想看到的输出:
+-------+--------------------+------+---------------------------------------+
|dollars| timestampGMT| color|distinct_color_count_over_the_last_week|
+-------+--------------------+------+---------------------------------------+
| 17|2017-03-10 15:27:...|orange| 1|
| 13|2017-03-15 12:27:...| red| 2|
| 25|2017-03-18 11:27:...| red| 1|
+-------+--------------------+------+---------------------------------------+
Run Code Online (Sandbox Code Playgroud)
Bob*_*ain 39
我发现我可以使用collect_set和size函数的组合来模拟窗口上countDistinct的功能:
from pyspark.sql.window import Window
from pyspark.sql import functions as F
#function to calculate number of seconds from number of days
days = lambda i: i * 86400
#create some test data
df = spark.createDataFrame([(17, "2017-03-10T15:27:18+00:00", "orange"),
(13, "2017-03-15T12:27:18+00:00", "red"),
(25, "2017-03-18T11:27:18+00:00", "red")],
["dollars", "timestampGMT", "color"])
#convert string timestamp to timestamp type
df = df.withColumn('timestampGMT', df.timestampGMT.cast('timestamp'))
#create window by casting timestamp to long (number of seconds)
w = (Window.orderBy(F.col("timestampGMT").cast('long')).rangeBetween(-days(7), 0))
#use collect_set and size functions to perform countDistinct over a window
df = df.withColumn('distinct_color_count_over_the_last_week', F.size(F.collect_set("color").over(w)))
df.show()
Run Code Online (Sandbox Code Playgroud)
这导致前一周记录的颜色数量明显不同:
+-------+--------------------+------+---------------------------------------+
|dollars| timestampGMT| color|distinct_color_count_over_the_last_week|
+-------+--------------------+------+---------------------------------------+
| 17|2017-03-10 15:27:...|orange| 1|
| 13|2017-03-15 12:27:...| red| 2|
| 25|2017-03-18 11:27:...| red| 1|
+-------+--------------------+------+---------------------------------------+
Run Code Online (Sandbox Code Playgroud)
@Bob Swain的回答很好,而且行得通!从那时起,Spark版本2.1开始,Spark提供了等效的countDistinct
功能,approx_count_distinct
其使用效率更高,最重要的是,它支持在窗口上进行计数。
下面是替换代码:
#approx_count_distinct supports a window
df = df.withColumn('distinct_color_count_over_the_last_week', F.approx_count_distinct("color").over(w))
Run Code Online (Sandbox Code Playgroud)
对于基数较小的列,结果应与“ countDistinct”相同。当数据集增长很多时,您应该考虑调整参数rsd
-允许的最大估计误差,这使您可以调整权衡的精度/性能。
归档时间: |
|
查看次数: |
11285 次 |
最近记录: |