如何返回满足特定条件的向量中的最后一个值

Mic*_*leL 4 r

我有一个向量(在数据框中)充满了越来越多的数字.我想找到所有连续的数字,并用系列中的第一个数字替换它们.这可能没有循环吗?

我的输入数据是:

V1
1
4
5
7
10
15
16
17
20
Run Code Online (Sandbox Code Playgroud)

我想输出的是:

V1    Out
1     1
4     4
5     4
7     7
10    10
15    15
16    15
17    15
20    20
Run Code Online (Sandbox Code Playgroud)

到目前为止,我设法使用diff()计算两行之间的差异,并通过向量循环来替换正确的值.

V1 <- c(1, 4, 5, 7, 10, 15, 16, 17, 20)
df <- data.frame(V1)
df$diff <- c(0, diff(df$V1) == 1)
df$Out <- NA
for (j in 1:(nrow(df))){
    if (df$diff[j] == 0){
        df$Out[j] <- df$V1[j]
    } else {
        df$Out[j] <- df$V1[max(which(df$diff[1:j] == 0))]
    }
}
Run Code Online (Sandbox Code Playgroud)

它完成了这项工作,但效率非常低.有没有办法摆脱循环并使这段代码快速?

非常感谢你!

Sot*_*tos 8

使用base R你可以做到,

with(d1, ave(V1, cumsum(c(1, diff(V1) != 1)), FUN = function(i) i[1]))
#[1]  1  4  4  7 10 15 15 15 20
Run Code Online (Sandbox Code Playgroud)

dplyr

library(dplyr)

d1 %>% 
 group_by(grp = cumsum(c(1, diff(V1) != 1))) %>% 
 mutate(out = first(V1))
Run Code Online (Sandbox Code Playgroud)

data.table

library(data.table)

setDT(d1)[, out := first(V1), by = cumsum(c(1, diff(V1) != 1))]
Run Code Online (Sandbox Code Playgroud)


Cat*_*ath 5

使用zoo包的另一个选择,包括3个步骤:

定义V2V1:

df$V2 <- df$V1
Run Code Online (Sandbox Code Playgroud)

替换连续值(其中diff1)由NA:

df$V2[c(FALSE, diff(df$V1)==1)] <- NA
Run Code Online (Sandbox Code Playgroud)

最后,zoo::na.locf用来替换NA最后一个值的s:

library(zoo)
df$V2 <- na.locf(df$V2)
Run Code Online (Sandbox Code Playgroud)

输出:

df
#   V1 V2
# 1  1  1
# 2  4  4
# 3  5  4
# 4  7  7
# 5 10 10
# 6 15 15
# 7 16 15
# 8 17 15
# 9 20 20
Run Code Online (Sandbox Code Playgroud)

另一篇文章,使用magrittr:

library(magrittr)
df$V2 <- df$V1 %>% replace(c(FALSE, diff(df$V1)==1), NA) %>% na.locf
Run Code Online (Sandbox Code Playgroud)


Uwe*_*Uwe 5

使用shift()lag()代替diff()

到目前为止呈现的所有解决方案都diff(V1)用于确定连续数字.另一方面,data.table并且dplyr包括可以使用的shift()and和lag()resp.函数(也由@Frank建议).

所以,而不是Sotos的data.table方法

library(data.table)
setDT(d1)[, out := first(V1), by = cumsum(c(1, diff(V1) != 1))]
Run Code Online (Sandbox Code Playgroud)

我们可以写

setDT(d1)[, out := V1[1], by = cumsum(V1 - shift(V1, fill = V1[1]) != 1)]
Run Code Online (Sandbox Code Playgroud)

dplyr解决方案成为

library(dplyr)
d1 %>% 
  group_by(grp = cumsum(V1 - lag(V1, default = V1[1]) != 1)) %>% 
  mutate(out = first(V1)) 
Run Code Online (Sandbox Code Playgroud)

同样,基础R解决方案变为

library(data.table)
with(d1, ave(V1, cumsum(V1 - shift(V1, fill = V1[1]) != 1), FUN = function(i) i[1]))
Run Code Online (Sandbox Code Playgroud)

Cath的动物园:: na.locf()接近

library(zoo)
library(magrittr)
library(data.table)
df$V2 <- df$V1 %>% replace(DF$V1 == shift(DF$V1, fill = DF$V1[1]) + 1, NA) %>% na.locf()
Run Code Online (Sandbox Code Playgroud)

基准

有了这么多种方法,我想知道哪种方法最快.另外,我注意到所有解决方案都使用了double1类型的常量而不是整数常量,尽管问题是关于连续数字,这意味着类型为整数.同样,用来代替.1LNANA_integer_

类型转换可能会增加性能损失,这是某些包的原因,例如,data.table发出警告或错误.所以,我发现调查类型转换对基准测试结果的影响很有意思.

基准数据

通过从2个M数中采样,创建具有1M行的data.frame.为了保持一致,结果始终存储在Outdata.frame的列中.对于data.table版本,使用副本DF.

library(data.table)
n <- 1e6L
f <- 2L
set.seed(1234L)
DF <- data.frame(V1 = sort(sample.int(f*n, n)),
                 Out = 1:n)
DT <- data.table(DF)
DT
Run Code Online (Sandbox Code Playgroud)

基准代码

正在测试12种不同的方法,每种方法具有双重整数常数,总共产生24种变体.

library(magrittr)
library(microbenchmark)
bm <- microbenchmark(
  ave_diff = DF$Out <- with(DF, ave(V1, cumsum(c(1, diff(V1) != 1)), FUN = function(i) i[1])),
  ave_shift = DF$Out <- with(DF, ave(V1, cumsum(V1 - shift(V1, fill = V1[1]) != 1), FUN = function(i) i[1])),
  zoo_diff = {DF$Out <- DF$V1; DF$Out[c(FALSE, diff(DF$V1) == 1)] <- NA; DF$Out <- zoo::na.locf(DF$Out)},
  zoo_pipe = DF$Out <- DF$V1 %>% replace(c(FALSE, diff(DF$V1) == 1), NA) %>% zoo::na.locf(),
  zoo_shift = DF$Out <- DF$V1 %>% replace(DF$V1 == shift(DF$V1, fill = DF$V1[1]) + 1, NA) %>% zoo::na.locf(),
  dp_diff = r2 <- DF %>% 
    dplyr::group_by(grp = cumsum(c(1, diff(V1) != 1))) %>% 
    dplyr::mutate(Out = first(V1)),
  dp_lag = r3 <- DF %>% 
    dplyr::group_by(grp = cumsum(V1 - dplyr::lag(V1, default = V1[1]) != 1)) %>% 
    dplyr::mutate(Out = first(V1)),
  dt_diff = DT[, Out := V1[1], by = cumsum(c(1, diff(V1) != 1))],
  dt_shift1 = DT[, Out := V1[1], by = cumsum(V1 - shift(V1, fill = V1[1]) != 1)],
  dt_shift2 = DT[, Out := V1[1], by = cumsum(V1 != shift(V1, fill = V1[1]) + 1)],
  dt_zoo_diff = DT[, Out := V1][c(FALSE, diff(DF$V1) == 1), Out := NA][, Out := zoo::na.locf(Out)],
  dt_zoo_shift = DT[, Out := V1][V1 == shift(V1, fill = V1[1]) + 1, Out := NA][, Out := zoo::na.locf(Out)],
  ave_diff_L = DF$Out <- with(DF, ave(V1, cumsum(c(1L, diff(V1) != 1L)), FUN = function(i) i[1L])),
  ave_shift_L = DF$Out <- with(DF, ave(V1, cumsum(V1 - shift(V1, fill = V1[1L]) != 1L), FUN = function(i) i[1L])),
  zoo_diff_L = {DF$Out <- DF$V1; DF$Out[c(FALSE, diff(DF$V1) == 1L)] <- NA_integer_; DF$Out <- zoo::na.locf(DF$Out)},
  zoo_pipe_L = DF$Out <- DF$V1 %>% replace(c(FALSE, diff(DF$V1) == 1L), NA_integer_) %>% zoo::na.locf(),
  zoo_shift_L = DF$Out <- DF$V1 %>% replace(DF$V1 == shift(DF$V1, fill = DF$V1[1L]) + 1L, NA_integer_) %>% zoo::na.locf(),
  dp_diff_L = r2 <- DF %>% 
    dplyr::group_by(grp = cumsum(c(1L, diff(V1) != 1L))) %>% 
    dplyr::mutate(Out = first(V1)),
  dp_lag_L = r3 <- DF %>% 
    dplyr::group_by(grp = cumsum(V1 - dplyr::lag(V1, default = V1[1L]) != 1L)) %>% 
    dplyr::mutate(Out = first(V1)),
  dt_diff_L = DT[, Out := V1[1L], by = cumsum(c(1L, diff(V1) != 1L))],
  dt_shift1_L = DT[, Out := V1[1L], by = cumsum(V1 - shift(V1, fill = V1[1L]) != 1L)],
  dt_shift2_L = DT[, Out := V1[1L], by = cumsum(V1 != shift(V1, fill = V1[1L]) + 1L)],
  dt_zoo_diff_L = DT[, Out := V1][c(FALSE, diff(DF$V1) == 1L), Out := NA_integer_][, Out := zoo::na.locf(Out)],
  dt_zoo_shift_L = DT[, Out := V1][V1 == shift(V1, fill = V1[1L]) + 1L, Out := NA_integer_][, Out := zoo::na.locf(Out)],
  times = 20L
)
Run Code Online (Sandbox Code Playgroud)

基准测试结果

library(ggplot2)
autoplot(bm)
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

请注意时间轴的对数刻度.

Unit: milliseconds
           expr        min         lq      mean    median        uq       max neval   cld
       ave_diff 2594.89941 2643.32224 2752.9753 2723.7035 2868.6586 3006.0420    20     e
      ave_shift  947.13267 1001.70742 1107.7351 1047.6835 1218.5809 1395.5059    20   c  
       zoo_diff  100.13967  130.23284  197.7273  142.8525  262.1980  428.2976    20 a    
       zoo_pipe  104.98025  112.04101  181.3073  119.5275  185.3215  434.2936    20 a    
      zoo_shift   88.86549   98.49058  177.2143  110.5392  260.1160  416.9985    20 a    
        dp_diff 1148.18227 1219.68396 1303.6350 1290.5575 1344.1400 1628.1786    20    d 
         dp_lag  712.58827  746.77952  804.8908  776.3303  809.8323 1157.2102    20  b   
        dt_diff  226.67524  233.81038  292.0675  241.9369  275.8491  517.1760    20 a    
      dt_shift1  199.64651  207.39276  255.1607  215.7960  223.7947  882.9923    20 a    
      dt_shift2  203.87617  210.06736  260.8550  218.9917  244.7247  499.8797    20 a    
    dt_zoo_diff  109.45194  121.41501  216.3579  159.0960  278.5257  483.1110    20 a    
   dt_zoo_shift   94.59905  109.32432  204.0329  127.0619  373.8622  430.0885    20 a    
     ave_diff_L  992.12820 1041.12873 1127.8128 1071.8525 1217.1493 1457.3166    20   c  
    ave_shift_L  905.41152  973.81932 1063.2237 1015.6805 1170.2522 1323.9317    20   c  
     zoo_diff_L  103.30228  114.63442  227.4359  140.5280  300.3003  822.3366    20 a    
     zoo_pipe_L  103.89433  112.16467  231.3165  133.3362  398.7240  545.7856    20 a    
    zoo_shift_L   91.88764  104.21339  157.6434  138.7488  165.0197  401.3890    20 a    
      dp_diff_L  749.65952  766.00479  851.0737  806.1116  886.6429 1155.3144    20  b   
       dp_lag_L  731.08180  757.95232  823.0169  794.4421  827.7100 1079.2576    20  b   
      dt_diff_L  214.97477  226.80928  241.3575  232.7037  244.8673  323.6259    20 a    
    dt_shift1_L  199.80509  211.20539  277.5616  218.3371  259.9801  513.2925    20 a    
    dt_shift2_L  200.37902  204.23732  224.7275  210.7217  216.6133  470.6335    20 a    
  dt_zoo_diff_L  111.64757  122.62327  162.4947  140.4175  174.0932  409.0788    20 a    
 dt_zoo_shift_L   95.91114  109.24219  164.7059  126.5924  170.2320  388.6558    20 a
Run Code Online (Sandbox Code Playgroud)

意见

对于给定的问题大小和结构:

  • zoo::na.locf()方法比使用具有组合的微弱优势分组的各种实施方式更快地na.locf()shift().
  • 第二个但接近的是data.table分组.
  • 第三,但慢三倍dplyr.
  • 最后一次ave()比最快慢20多倍,每次跑3秒.
  • shift()/ lag()版本总是比快diff().
  • 类型转换很重要.使用的版本diff()特别受影响,例如,具有整数常量的ave_diff比双容量版本快约2.5倍.

  • 是的,动物园的岩石;-D (2认同)