pro*_*bot 0 python algorithm gpx pandas
例如,我可能有一些这样的信息:
<trkpt lat="-33.8161780" lon="150.8710320">
<ele>73.0</ele>
<time>2017-07-08T22:05:45Z</time>
<extensions>
<power>0</power>
<gpxtpx:TrackPointExtension>
<gpxtpx:atemp>7</gpxtpx:atemp>
<gpxtpx:hr>115</gpxtpx:hr>
<gpxtpx:cad>27</gpxtpx:cad>
</gpxtpx:TrackPointExtension>
</extensions>
</trkpt>
Run Code Online (Sandbox Code Playgroud)
我如何根据这些信息计算速度?我使用 python etree 模块来解析文件,并将所有信息存储在 pandas 数据库中。
有人提到我可能应该显示 pandas 数据框。它看起来像这样:
longitude latitude ele temp
time
2017-07-08 22:05:45 150.8710320 -33.8161780 73.0 7
2017-07-08 22:05:46 150.8710350 -33.8161500 73.0 7
2017-07-08 22:05:47 150.8710440 -33.8161170 73.0 7
2017-07-08 22:05:48 150.8710540 -33.8160820 73.0 7
2017-07-08 22:05:49 150.8710690 -33.8160430 73.0 7
Run Code Online (Sandbox Code Playgroud)
等等。
speed等于distance / time。和longitude大概latitude代表地球表面的位置。如果我们接受半径为 6371 km 的球体作为地球的近似值,那么我们可以轻松地将longitude和转换latitude为xyz- 坐标:
r = 6371000 # meters
df['theta'] = np.deg2rad(df['longitude'])
df['phi'] = np.deg2rad(df['latitude'])
df['x'] = r*np.cos(df['theta'])*np.sin(df['phi'])
df['y'] = r*np.sin(df['theta'])*np.sin(df['phi'])
df['z'] = r*np.cos(df['phi'])
Run Code Online (Sandbox Code Playgroud)
现在计算连续点之间的距离并不难:
df['x2'] = df['x'].shift()
df['y2'] = df['y'].shift()
df['z2'] = df['z'].shift()
df['distance'] = np.sqrt((df['x2']-df['x'])**2 + (df['y2']-df['y'])**2 + (df['z2']-df['z'])**2)
Run Code Online (Sandbox Code Playgroud)
然而,这是弦长——球体表面上两点之间的直线距离。如果这些点相距很远,弦就会穿透地球表面。据推测,运动是在地球表面进行的。因此,更准确的距离计算将使用arclength:
df['central angle'] = np.arccos((df['x']*df['x2'] + df['y']*df['y2'] + df['z']*df['z2'])/r**2)
df['arclength'] = df['central angle']*r
Run Code Online (Sandbox Code Playgroud)
圆心角采用点积公式。
计算完弧长(距离)后,我们现在还必须计算time连续观察值之间的间隔(即 DataFrame 的行):
df['time'] = (df.index.to_series().diff() / pd.Timedelta(seconds=1))
Run Code Online (Sandbox Code Playgroud)
所以使用speed = distance / time:
df['speed'] = df['arclength'] / df['time'] # in meters/second
Run Code Online (Sandbox Code Playgroud)
import numpy as np
import pandas as pd
df = pd.DataFrame({'ele': [73.0, 73.0, 73.0, 73.0, 73.0], 'latitude': [-33.816178, -33.81615, -33.816117, -33.816082, -33.816043], 'longitude': [150.871032, 150.871035, 150.87104399999998, 150.87105400000002, 150.871069], 'temp': [7, 7, 7, 7, 7], 'time': ['2017-07-08 22:05:45', '2017-07-08 22:05:46', '2017-07-08 22:05:47', '2017-07-08 22:05:48', '2017-07-08 22:05:49']})
df['time'] = pd.to_datetime(df['time'])
df = df.set_index('time')
columns = df.columns.tolist()
r = 6371000 # radius of the Earth in meters
df['theta'] = np.deg2rad(df['longitude'])
df['phi'] = np.deg2rad(df['latitude'])
df['x'] = r*np.cos(df['theta'])*np.sin(df['phi'])
df['y'] = r*np.sin(df['theta'])*np.sin(df['phi'])
df['z'] = r*np.cos(df['phi'])
df['x2'] = df['x'].shift()
df['y2'] = df['y'].shift()
df['z2'] = df['z'].shift()
df['distance'] = np.sqrt((df['x2']-df['x'])**2 + (df['y2']-df['y'])**2 + (df['z2']-df['z'])**2)
df['central angle'] = np.arccos((df['x']*df['x2'] + df['y']*df['y2'] + df['z']*df['z2'])/r**2)
df['arclength'] = df['central angle']*r
df['time'] = (df.index.to_series().diff() / pd.Timedelta(seconds=1))
df['speed'] = df['arclength'] / df['time'] # in meters/second
df = df[columns + ['speed']]
print(df)
Run Code Online (Sandbox Code Playgroud)
产量
ele latitude longitude temp speed
time
2017-07-08 22:05:45 73.0 -33.816178 150.871032 7 NaN
2017-07-08 22:05:46 73.0 -33.816150 150.871035 7 3.119892
2017-07-08 22:05:47 73.0 -33.816117 150.871044 7 3.712201
2017-07-08 22:05:48 73.0 -33.816082 150.871054 7 3.940673
2017-07-08 22:05:49 73.0 -33.816043 150.871069 7 4.433590
Run Code Online (Sandbox Code Playgroud)
如果你评论出来
df = df[columns + ['speed']]
Run Code Online (Sandbox Code Playgroud)
并重新运行脚本,您将看到所有中间计算。您会注意到它df['distance']非常接近df['arclength']。由于地球表面上的点相距不是很远,因此弦长是弧长的良好近似值。所以对于你发布的数据
df['speed'] = df['distance'] / df['time']
Run Code Online (Sandbox Code Playgroud)
也会同样有效。然而,arclength计算更加稳健,因为如果点相距较远,它会给出更准确的值。