如何在Pyspark中将列表拆分为多个列?

Dar*_*ero 11 apache-spark-sql pyspark

我有:

key   value
a    [1,2,3]
b    [2,3,4]
Run Code Online (Sandbox Code Playgroud)

我想要:

key value1 value2 value3
a     1      2      3
b     2      3      4
Run Code Online (Sandbox Code Playgroud)

似乎在scala我可以写:df.select($"value._1", $"value._2", $"value._3"),但在python中是不可能的.

那么有一个很好的方法吗?

MaF*_*aFF 34

这取决于你的"列表"的类型:

  • 如果是类型ArrayType():

    df = hc.createDataFrame(sc.parallelize([['a', [1,2,3]], ['b', [2,3,4]]]), ["key", "value"])
    df.printSchema()
    df.show()
    root
     |-- key: string (nullable = true)
     |-- value: array (nullable = true)
     |    |-- element: long (containsNull = true)
    
    Run Code Online (Sandbox Code Playgroud)

    您可以像使用python一样访问值[]:

    df.select("key", df.value[0], df.value[1], df.value[2]).show()
    +---+--------+--------+--------+
    |key|value[0]|value[1]|value[2]|
    +---+--------+--------+--------+
    |  a|       1|       2|       3|
    |  b|       2|       3|       4|
    +---+--------+--------+--------+
    
    +---+-------+
    |key|  value|
    +---+-------+
    |  a|[1,2,3]|
    |  b|[2,3,4]|
    +---+-------+
    
    Run Code Online (Sandbox Code Playgroud)
  • 如果是类型StructType():(也许你通过读取JSON构建了数据帧)

    df2 = df.select("key", psf.struct(
            df.value[0].alias("value1"), 
            df.value[1].alias("value2"), 
            df.value[2].alias("value3")
        ).alias("value"))
    df2.printSchema()
    df2.show()
    root
     |-- key: string (nullable = true)
     |-- value: struct (nullable = false)
     |    |-- value1: long (nullable = true)
     |    |-- value2: long (nullable = true)
     |    |-- value3: long (nullable = true)
    
    +---+-------+
    |key|  value|
    +---+-------+
    |  a|[1,2,3]|
    |  b|[2,3,4]|
    +---+-------+
    
    Run Code Online (Sandbox Code Playgroud)

    您可以使用*以下方法直接"拆分"列:

    df2.select('key', 'value.*').show()
    +---+------+------+------+
    |key|value1|value2|value3|
    +---+------+------+------+
    |  a|     1|     2|     3|
    |  b|     2|     3|     4|
    +---+------+------+------+
    
    Run Code Online (Sandbox Code Playgroud)

  • 当我使用“*”分割StructType的列时,可以重命名列吗? (3认同)

小智 8

我想将大小列表(数组)的情况添加到 pault 答案。

在我们的列包含中型数组(或大型数组)的情况下,仍然可以将它们拆分为列。

from pyspark.sql.types import *          # Needed to define DataFrame Schema.
from pyspark.sql.functions import expr   

# Define schema to create DataFrame with an array typed column.
mySchema = StructType([StructField("V1", StringType(), True),
                       StructField("V2", ArrayType(IntegerType(),True))])

df = spark.createDataFrame([['A', [1, 2, 3, 4, 5, 6, 7]], 
                            ['B', [8, 7, 6, 5, 4, 3, 2]]], schema= mySchema)

# Split list into columns using 'expr()' in a comprehension list.
arr_size = 7
df = df.select(['V1', 'V2']+[expr('V2[' + str(x) + ']') for x in range(0, arr_size)])

# It is posible to define new column names.
new_colnames = ['V1', 'V2'] + ['val_' + str(i) for i in range(0, arr_size)] 
df = df.toDF(*new_colnames)
Run Code Online (Sandbox Code Playgroud)

结果是:

df.show(truncate= False)

+---+---------------------+-----+-----+-----+-----+-----+-----+-----+
|V1 |V2                   |val_0|val_1|val_2|val_3|val_4|val_5|val_6|
+---+---------------------+-----+-----+-----+-----+-----+-----+-----+
|A  |[1, 2, 3, 4, 5, 6, 7]|1    |2    |3    |4    |5    |6    |7    |
|B  |[8, 7, 6, 5, 4, 3, 2]|8    |7    |6    |5    |4    |3    |2    |
+---+---------------------+-----+-----+-----+-----+-----+-----+-----+
Run Code Online (Sandbox Code Playgroud)