在Spark中获取组的最后一个值

Gau*_*sal 5 apache-spark pyspark sparkr spark-dataframe

我有一个SparkR DataFrame,如下所示:

#Create R data.frame
custId <- c(rep(1001, 5), rep(1002, 3), 1003)
date <- c('2013-08-01','2014-01-01','2014-02-01','2014-03-01','2014-04-01','2014-02-01','2014-03-01','2014-04-01','2014-04-01')
desc <- c('New','New','Good','New', 'Bad','New','Good','Good','New')
newcust <- c(1,1,0,1,0,1,0,0,1)
df <- data.frame(custId, date, desc, newcust)

#Create SparkR DataFrame    
df <- createDataFrame(df)
display(df)
      custId|    date   | desc | newcust
      --------------------------------------
       1001 | 2013-08-01| New  |   1
       1001 | 2014-01-01| New  |   1
       1001 | 2014-02-01| Good |   0
       1001 | 2014-03-01| New  |   1
       1001 | 2014-04-01| Bad  |   0
       1002 | 2014-02-01| New  |   1
       1002 | 2014-03-01| Good |   0
       1002 | 2014-04-01| Good |   0 
       1003 | 2014-04-01| New  |   1
Run Code Online (Sandbox Code Playgroud)

newcust表示每次custId出现新客户时,或如果相同custId的客户desc回复为“ 新客户”,则表示有新客户。我要获取的是desc每个分组的最后一个值newcust,同时保持每个分组的第一个值date。以下是我要获取的DataFrame。如何在Spark中执行此操作?PySpark或SparkR代码均可使用。

#What I want 
custId|    date   | newcust | finaldesc
----------------------------------------------
 1001 | 2013-08-01|   1     | New
 1001 | 2014-01-01|   1     | Good
 1001 | 2014-03-01|   1     | Bad
 1002 | 2014-02-01|   1     | Good
 1003 | 2014-04-01|   1     | New
Run Code Online (Sandbox Code Playgroud)

MaF*_*aFF 7

我不知道sparkR,所以我会在pyspark中回答。您可以使用窗口功能来实现。

首先,让我们定义“分组newcust”,您希望每条newcust等于1的行都成为新组的开始,计算累计总和就可以了:

from pyspark.sql import Window
import pyspark.sql.functions as psf

w1 = Window.partitionBy("custId").orderBy("date")
df1 = df.withColumn("subgroup", psf.sum("newcust").over(w1))

+------+----------+----+-------+--------+
|custId|      date|desc|newcust|subgroup|
+------+----------+----+-------+--------+
|  1001|2013-08-01| New|      1|       1|
|  1001|2014-01-01| New|      1|       2|
|  1001|2014-02-01|Good|      0|       2|
|  1001|2014-03-01| New|      1|       3|
|  1001|2014-04-01| Bad|      0|       3|
|  1002|2014-02-01| New|      1|       1|
|  1002|2014-03-01|Good|      0|       1|
|  1002|2014-04-01|Good|      0|       1|
|  1003|2014-04-01| New|      1|       1|
+------+----------+----+-------+--------+
Run Code Online (Sandbox Code Playgroud)

对于每个subgroup,我们想保留第一个日期:

w2 = Window.partitionBy("custId", "subgroup")
df2 = df1.withColumn("first_date", psf.min("date").over(w2))

+------+----------+----+-------+--------+----------+
|custId|      date|desc|newcust|subgroup|first_date|
+------+----------+----+-------+--------+----------+
|  1001|2013-08-01| New|      1|       1|2013-08-01|
|  1001|2014-01-01| New|      1|       2|2014-01-01|
|  1001|2014-02-01|Good|      0|       2|2014-01-01|
|  1001|2014-03-01| New|      1|       3|2014-03-01|
|  1001|2014-04-01| Bad|      0|       3|2014-03-01|
|  1002|2014-02-01| New|      1|       1|2014-02-01|
|  1002|2014-03-01|Good|      0|       1|2014-02-01|
|  1002|2014-04-01|Good|      0|       1|2014-02-01|
|  1003|2014-04-01| New|      1|       1|2014-04-01|
+------+----------+----+-------+--------+----------+
Run Code Online (Sandbox Code Playgroud)

最后,我们要保留每个行的最后一行(按日期排序)subgroup

w3 = Window.partitionBy("custId", "subgroup").orderBy(psf.desc("date"))
df3 = df2.withColumn(
    "rn", 
    psf.row_number().over(w3)
).filter("rn = 1").select(
    "custId", 
    psf.col("first_date").alias("date"), 
    "desc"
)

+------+----------+----+
|custId|      date|desc|
+------+----------+----+
|  1001|2013-08-01| New|
|  1001|2014-01-01|Good|
|  1001|2014-03-01| Bad|
|  1002|2014-02-01|Good|
|  1003|2014-04-01| New|
+------+----------+----+
Run Code Online (Sandbox Code Playgroud)