我有 3 个文件表示相同的数据集分成 3 个,我需要连接:
import pandas
df1 = pandas.read_csv('path1')
df2 = pandas.read_csv('path2')
df3 = pandas.read_csv('path3')
df = pandas.concat([df1,df2,df3])
Run Code Online (Sandbox Code Playgroud)
但这会将标题保留在数据集的中间,我需要从第二个和第三个文件中删除标题(列名)。我怎么做?
我认为你需要numpy.concatenate用DataFrame构造函数:
df = pd.DataFrame(np.concatenate([df1.values, df2.values, df3.values]), columns=df1.columns)
Run Code Online (Sandbox Code Playgroud)
另一种解决方案是替换列名称中df2和df3:
df2.columns = df1.columns
df3.columns = df1.columns
df = pd.concat([df1,df2,df3], ignore_index=True)
Run Code Online (Sandbox Code Playgroud)
样品:
np.random.seed(100)
df1 = pd.DataFrame(np.random.randint(10, size=(2,3)), columns=list('ABF'))
print (df1)
A B F
0 8 8 3
1 7 7 0
df2 = pd.DataFrame(np.random.randint(10, size=(1,3)), columns=list('ERT'))
print (df2)
E R T
0 4 2 5
df3 = pd.DataFrame(np.random.randint(10, size=(3,3)), columns=list('HTR'))
print (df3)
H T R
0 2 2 2
1 1 0 8
2 4 0 9
Run Code Online (Sandbox Code Playgroud)
print (np.concatenate([df1.values, df2.values, df3.values]))
[[8 8 3]
[7 7 0]
[4 2 5]
[2 2 2]
[1 0 8]
[4 0 9]]
df = pd.DataFrame(np.concatenate([df1.values, df2.values, df3.values]), columns=df1.columns)
print (df)
A B F
0 8 8 3
1 7 7 0
2 4 2 5
3 2 2 2
4 1 0 8
5 4 0 9
Run Code Online (Sandbox Code Playgroud)
df = pd.concat([df1,df2,df3], ignore_index=True)
print (df)
A B F
0 8 8 3
1 7 7 0
2 4 2 5
3 2 2 2
4 1 0 8
5 4 0 9
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
11732 次 |
| 最近记录: |