Nic*_*REY 4 python tensorflow tensorflow-estimator
我试图像这样在估算器的eval_metric_ops中添加r的平方:
def model_fn(features, labels, mode, params):
predict = prediction(features, params, mode)
loss = my_loss_fn
eval_metric_ops = {
'rsquared': tf.subtract(1.0, tf.div(tf.reduce_sum(tf.squared_difference(label, tf.reduce_sum(tf.squared_difference(labels, tf.reduce_mean(labels)))),
name = 'rsquared')
}
train_op = tf.contrib.layers.optimize_loss(
loss = loss,
global_step = global_step,
learning_rate = 0.1,
optimizer = "Adam"
)
predictions = {"predictions": predict}
return tf.estimator.EstimatorSpec(
mode = mode,
predictions = predictions,
loss = loss,
train_op = train_op,
eval_metric_ops = eval_metric_ops
)
Run Code Online (Sandbox Code Playgroud)
但我有以下错误:
TypeError:eval_metric_ops的值必须为(metric_value,update_op)元组,给定:键:rsquared的Tensor(“ rsquared:0”,shape =(),dtype = float32)
我也尝试过不使用name参数,但是没有任何改变。您知道如何创建此eval_metric_ops吗?
eval_metric_ops需要按名称键入度量指标的字典。dict的值是调用度量函数的结果。您可以使用tf.metrics以下指标来实现指标功能:
def metric_fn(labels, predict):
SST, update_op1 = tf.metrics.mean_squared_error(labels, tf.reduce_mean(labels))
SSE, update_op2 = tf.metrics.mean_squared_error(labels, predictions )
return tf.subtract(1.0, tf.div(SSE, SST)), tf.group(update_op1, update_op2))
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
4778 次 |
| 最近记录: |