dat*_*sci 16 python markov-chains markov-models hidden-markov-models hmmlearn
我正在玩Hidden Markov模型来解决股市预测问题.我的数据矩阵包含特定安全性的各种功能:
01-01-2001, .025, .012, .01
01-02-2001, -.005, -.023, .02
Run Code Online (Sandbox Code Playgroud)
我适合一个简单的GaussianHMM:
from hmmlearn import GaussianHMM
mdl = GaussianHMM(n_components=3,covariance_type='diag',n_iter=1000)
mdl.fit(train[:,1:])
Run Code Online (Sandbox Code Playgroud)
使用模型(λ),我可以解码观察向量以找到对应于观察向量的最可能的隐藏状态序列:
print mdl.decode(test[0:5,1:])
(72.75, array([2, 1, 2, 0, 0]))
Run Code Online (Sandbox Code Playgroud)
在上面,我已经解码了观察向量O t =(O 1,O 2,...,O d)的隐藏状态序列,其包含测试集中的前五个实例.我想估计测试集中第六个实例的隐藏状态.想法是迭代第六个实例的一组离散的可能特征值,并选择具有最高似然性的观测序列O t + 1 argmax = P(O 1,O 2,...,O d + 1 |λ ).一旦我们观察到O d + 1的真实特征值,我们就可以将序列(长度为5)移动一次并重新执行:
l = 5
for i in xrange(len(test)-l):
values = []
for a in arange(-0.05,0.05,.01):
for b in arange(-0.05,0.05,.01):
for c in arange(-0.05,0.05,.01):
values.append(mdl.decode(vstack((test[i:i+l,1:],array([a,b,c])))))
print max(enumerate(values),key=lambda x: x[1])
Run Code Online (Sandbox Code Playgroud)
问题在于,当我对观测矢量O t + 1进行解码时,具有最高似然性的预测几乎总是相同的(例如,具有最高似然性的估计总是具有等于[0.04 0.04 0.04]的O d + 1的特征值,并且是隐藏状态[0]):
(555, (74.71248518927949, array([2, 1, 2, 0, 0, 0]))) [ 0.04 0.04 0.04]
(555, (69.41963358191555, array([2, 2, 0, 0, 0, 0]))) [ 0.04 0.04 0.04]
(555, (77.11516871816922, array([2, 0, 0, 0, 0, 0]))) [ 0.04 0.04 0.04]
Run Code Online (Sandbox Code Playgroud)
我完全有可能误解了它的目的mdl.decode
,从而错误地使用它.如果是这种情况,我怎样才能最好地迭代O d + 1的可能值,然后最大化P(O 1,O 2,...,O d + 1 |λ)?
你的实际价值有界限吗[-0.05, 0.05)
?
当我最初构建一个示例数据集来查看您的问题时,我在[0,1]
. (a,b,c)
当我这样做时,我也得到了与您观察到的相同结果 -对于每个序列,始终是第六个条目的最大值,并且始终是相同的预测类别。但考虑到我的数据分布(在0
和 之间均匀分布)比第六个条目(在和 之间)1
的网格搜索值具有更大的集中趋势,因此 HMM 总是选择最高值三元组是有道理的,因为这是最接近其所训练的分布的主要密度。-.05
.05
(.04,.04,.04)
当我使用与我们允许的第六个条目 ( ) 相同的可能值范围内的均匀分布来重建数据集时[-0.05,0.05)
,输出更加多样化:O_t+1
选择和类别预测都显示出序列之间的合理差异。从您的示例数据来看,您似乎至少同时具有正值和负值,但您可以尝试绘制每个特征的分布,并查看可能的第六项值的范围是否都是合理的。
这是一些示例数据和评估代码。(a,b,c)
每次有新的最佳序列时,或者当第六个观察的预测发生变化时(只是为了表明它们并不完全相同),它都会打印一条消息。每个 6 元素序列的最高似然性以及预测和最佳第 6 个数据点存储在 中best_per_span
。
首先,构建样本数据集:
import numpy as np
import pandas as pd
dates = pd.date_range(start="01-01-2001", end="31-12-2001", freq='D')
n_obs = len(dates)
n_feat = 3
values = np.random.uniform(-.05, .05, size=n_obs*n_feat).reshape((n_obs,n_feat))
df = pd.DataFrame(values, index=dates)
df.head()
0 1 2
2001-01-01 0.020891 -0.048750 -0.027131
2001-01-02 0.013571 -0.011283 0.041322
2001-01-03 -0.008102 0.034088 -0.029202
2001-01-04 -0.019666 -0.005705 -0.003531
2001-01-05 -0.000238 -0.039251 0.029307
Run Code Online (Sandbox Code Playgroud)
现在分为训练集和测试集:
train_pct = 0.7
train_size = round(train_pct*n_obs)
train_ix = np.random.choice(range(n_obs), size=train_size, replace=False)
train_dates = df.index[train_ix]
train = df.loc[train_dates]
test = df.loc[~df.index.isin(train_dates)]
train.shape # (255, 3)
test.shape # (110, 3)
Run Code Online (Sandbox Code Playgroud)
在训练数据上拟合三态 HMM:
# hmm throws a lot of deprecation warnings, we'll suppress them.
import warnings
with warnings.catch_warnings():
warnings.filterwarnings("ignore",category=DeprecationWarning)
# in the most recent hmmlearn we can't import GaussianHMM directly anymore.
from hmmlearn import hmm
mdl = hmm.GaussianHMM(n_components=3, covariance_type='diag', n_iter=1000)
mdl.fit(train)
Run Code Online (Sandbox Code Playgroud)
现在网格搜索最佳第六个 ( t+1
) 观测值:
# length of O_t
span = 5
# final store of optimal configurations per O_t+1 sequence
best_per_span = []
# update these to demonstrate heterogenous outcomes
current_abc = None
current_pred = None
for start in range(len(test)-span):
flag = False
end = start + span
first_five = test.iloc[start:end].values
output = []
for a in np.arange(-0.05,0.05,.01):
for b in np.arange(-0.05,0.05,.01):
for c in np.arange(-0.05,0.05,.01):
sixth = np.array([a, b, c])[:, np.newaxis].T
all_six = np.append(first_five, sixth, axis=0)
output.append((mdl.decode(all_six), (a,b,c)))
best = max(output, key=lambda x: x[0][0])
best_dict = {"start":start,
"end":end,
"sixth":best[1],
"preds":best[0][1],
"lik":best[0][0]}
best_per_span.append(best_dict)
# below here is all reporting
if best_dict["sixth"] != current_abc:
current_abc = best_dict["sixth"]
flag = True
print("New abc for range {}:{} = {}".format(start, end, current_abc))
if best_dict["preds"][-1] != current_pred:
current_pred = best_dict["preds"][-1]
flag = True
print("New pred for 6th position: {}".format(current_pred))
if flag:
print("Test sequence StartIx: {}, EndIx: {}".format(start, end))
print("Best 6th value: {}".format(best_dict["sixth"]))
print("Predicted hidden state sequence: {}".format(best_dict["preds"]))
print("Likelihood: {}\n".format(best_dict["nLL"]))
Run Code Online (Sandbox Code Playgroud)
循环运行时报告输出的示例:
New abc for range 3:8 = [-0.01, 0.01, 0.0]
New pred for 6th position: 1
Test sequence StartIx: 3, EndIx: 8
Best 6th value: [-0.01, 0.01, 0.0]
Predicted hidden state sequence: [0 2 2 1 0 1]
Likelihood: 35.30144407374163
New abc for range 18:23 = [-0.01, -0.01, -0.01]
New pred for 6th position: 2
Test sequence StartIx: 18, EndIx: 23
Best 6th value: [-0.01, -0.01, -0.01]
Predicted hidden state sequence: [0 0 0 1 2 2]
Likelihood: 34.31813078939214
Run Code Online (Sandbox Code Playgroud)
示例输出best_per_span
:
[{'end': 5,
'lik': 33.791537281734904,
'preds': array([0, 2, 0, 1, 2, 2]),
'sixth': [-0.01, -0.01, -0.01],
'start': 0},
{'end': 6,
'lik': 33.28967307589143,
'preds': array([0, 0, 1, 2, 2, 2]),
'sixth': [-0.01, -0.01, -0.01],
'start': 1},
{'end': 7,
'lik': 34.446813870838156,
'preds': array([0, 1, 2, 2, 2, 2]),
'sixth': [-0.01, -0.01, -0.01],
'start': 2}]
Run Code Online (Sandbox Code Playgroud)
除了报告元素之外,这并不是对您最初方法的重大更改,但它似乎确实按预期工作,并且每次都没有达到极限。
归档时间: |
|
查看次数: |
1157 次 |
最近记录: |