chi*_*hna 3 scala apache-spark apache-spark-sql
我通过groupby column1和date在Spark中创建了一个数据框,并计算了数量.
val table = df1.groupBy($"column1",$"date").sum("amount")
Run Code Online (Sandbox Code Playgroud)
Column1 |Date |Amount
A |1-jul |1000
A |1-june |2000
A |1-May |2000
A |1-dec |3000
A |1-Nov |2000
B |1-jul |100
B |1-june |300
B |1-May |400
B |1-dec |300
Run Code Online (Sandbox Code Playgroud)
现在,我想添加新列,表中任意两个日期的数量之间存在差异.
Ram*_*jan 16
Window如果计算固定为计算前几个月之间的差异,或者计算前两个月之间的差异,则可以使用函数...等等.您可以使用lag和lead运行Window.
但为此您需要更改日期列,如下所示,以便可以订购.
+-------+------+--------------+------+
|Column1|Date |Date_Converted|Amount|
+-------+------+--------------+------+
|A |1-jul |2017-07-01 |1000 |
|A |1-june|2017-06-01 |2000 |
|A |1-May |2017-05-01 |2000 |
|A |1-dec |2017-12-01 |3000 |
|A |1-Nov |2017-11-01 |2000 |
|B |1-jul |2017-07-01 |100 |
|B |1-june|2017-06-01 |300 |
|B |1-May |2017-05-01 |400 |
|B |1-dec |2017-12-01 |300 |
+-------+------+--------------+------+
Run Code Online (Sandbox Code Playgroud)
您可以通过执行操作找到上个月和当前月份之间的差异
import org.apache.spark.sql.expressions._
val windowSpec = Window.partitionBy("Column1").orderBy("Date_Converted")
import org.apache.spark.sql.functions._
df.withColumn("diff_Amt_With_Prev_Month", $"Amount" - when((lag("Amount", 1).over(windowSpec)).isNull, 0).otherwise(lag("Amount", 1).over(windowSpec)))
.show(false)
Run Code Online (Sandbox Code Playgroud)
你应该有
+-------+------+--------------+------+------------------------+
|Column1|Date |Date_Converted|Amount|diff_Amt_With_Prev_Month|
+-------+------+--------------+------+------------------------+
|B |1-May |2017-05-01 |400 |400.0 |
|B |1-june|2017-06-01 |300 |-100.0 |
|B |1-jul |2017-07-01 |100 |-200.0 |
|B |1-dec |2017-12-01 |300 |200.0 |
|A |1-May |2017-05-01 |2000 |2000.0 |
|A |1-june|2017-06-01 |2000 |0.0 |
|A |1-jul |2017-07-01 |1000 |-1000.0 |
|A |1-Nov |2017-11-01 |2000 |1000.0 |
|A |1-dec |2017-12-01 |3000 |1000.0 |
+-------+------+--------------+------+------------------------+
Run Code Online (Sandbox Code Playgroud)
您可以增加前两个月的滞后位置
df.withColumn("diff_Amt_With_Prev_two_Month", $"Amount" - when((lag("Amount", 2).over(windowSpec)).isNull, 0).otherwise(lag("Amount", 2).over(windowSpec)))
.show(false)
Run Code Online (Sandbox Code Playgroud)
哪个会给你
+-------+------+--------------+------+----------------------------+
|Column1|Date |Date_Converted|Amount|diff_Amt_With_Prev_two_Month|
+-------+------+--------------+------+----------------------------+
|B |1-May |2017-05-01 |400 |400.0 |
|B |1-june|2017-06-01 |300 |300.0 |
|B |1-jul |2017-07-01 |100 |-300.0 |
|B |1-dec |2017-12-01 |300 |0.0 |
|A |1-May |2017-05-01 |2000 |2000.0 |
|A |1-june|2017-06-01 |2000 |2000.0 |
|A |1-jul |2017-07-01 |1000 |-1000.0 |
|A |1-Nov |2017-11-01 |2000 |0.0 |
|A |1-dec |2017-12-01 |3000 |2000.0 |
+-------+------+--------------+------+----------------------------+
Run Code Online (Sandbox Code Playgroud)
我希望答案是有帮助的
(table.filter($"Date".isin("1-jul", "1-dec"))
.groupBy("Column1")
.pivot("Date")
.agg(first($"Amount"))
.withColumn("diff", $"1-dec" - $"1-jul")
).show
+-------+-----+-----+----+
|Column1|1-dec|1-jul|diff|
+-------+-----+-----+----+
| B| 300| 100| 200|
| A| 3000| 1000|2000|
+-------+-----+-----+----+
Run Code Online (Sandbox Code Playgroud)