如何在Jupyter笔记本中使用破折号?

blu*_*e13 16 python plotly jupyter-notebook plotly-dash

是否可以在Jupyter笔记本中使用破折号应用程序,而不是在浏览器中提供和查看?

我的目的是,使得鼠标悬停在一个图表生成用于另一曲线图所需要的输入Jupter笔记本内链接的曲线图.

ves*_*and 11

这个问题已经有一个很好的答案,但这个贡献将直接集中在:

1.如何在 Jupyterlab 中使用 Dash ,以及

2.如何通过将鼠标悬停在另一个图形上来选择图形输入


遵循这些步骤将直接在 JupyterLab 中释放 Plotly Dash:

1.安装最新的Plotly版本

2. 安装JupyterLab Dashconda install -c plotly jupyterlab-dash

3.使用提供的代码片段进一步启动一个 Dash 应用程序,其中包含一个基于 Pandas 数据帧的动画,每秒扩展一次。

JupyterLab 中 Dash 的屏幕截图(以下代码段中的代码)

在此处输入图片说明

这张图片显示了 Dash在 JupyterLab 内部真的被激发了。突出显示的四个部分是:

1 - 细胞。.ipynb您可能已经非常熟悉的a中的单元格

2 - 破折号。一个“实时”破折号应用程序,它用一个随机数扩展所有三个轨迹,并每秒显示更新的数字。

3 - 控制台。一个控制台,您可以在其中检查脚本中的可用元素,例如,fig.show

4 - mode这显示了一些真正的魔法所在:

app.run_server(mode='jupyterlab', port = 8090, dev_tools_ui=True, #debug=True,
              dev_tools_hot_reload =True, threaded=True)
Run Code Online (Sandbox Code Playgroud)

您可以选择在以下位置启动 dash 应用程序:

  1. Jupyterlab,就像在截图中一样mode='jupyterlab'
  2. 或在单元格中,使用mode='inline'

在此处输入图片说明

  1. 或在您的默认浏览器中使用 mode='external'

在此处输入图片说明

代码 1:

import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from jupyter_dash import JupyterDash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output

# code and plot setup
# settings
pd.options.plotting.backend = "plotly"

# sample dataframe of a wide format
np.random.seed(4); cols = list('abc')
X = np.random.randn(50,len(cols))  
df=pd.DataFrame(X, columns=cols)
df.iloc[0]=0;

# plotly figure
fig = df.plot(template = 'plotly_dark')

app = JupyterDash(__name__)
app.layout = html.Div([
    html.H1("Random datastream"),
            dcc.Interval(
            id='interval-component',
            interval=1*1000, # in milliseconds
            n_intervals=0
        ),
    dcc.Graph(id='graph'),
])

# Define callback to update graph
@app.callback(
    Output('graph', 'figure'),
    [Input('interval-component', "n_intervals")]
)
def streamFig(value):
    
    global df
    
    Y = np.random.randn(1,len(cols))  
    df2 = pd.DataFrame(Y, columns = cols)
    df = df.append(df2, ignore_index=True)#.reset_index()
    df.tail()
    df3=df.copy()
    df3 = df3.cumsum()
    fig = df3.plot(template = 'plotly_dark')
    #fig.show()
    return(fig)

app.run_server(mode='jupyterlab', port = 8090, dev_tools_ui=True, #debug=True,
              dev_tools_hot_reload =True, threaded=True)
Run Code Online (Sandbox Code Playgroud)

但好消息并不止于此,关于:

我的目的是在 Jupyter 笔记本中链接图形,以便将鼠标悬停在一个图形上会生成另一个图形所需的输入。

dash.plotly.com上有一个完美的例子,它会在段落下为你做到这一点Update Graphs on Hover

在此处输入图片说明

我对原始设置进行了一些必要的更改,以便可以在 JupyterLab 中运行它。

代码片段 2 - 通过悬停选择图形源:

import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from jupyter_dash import JupyterDash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
import dash.dependencies

# code and plot setup
# settings
pd.options.plotting.backend = "plotly"


external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = JupyterDash(__name__, external_stylesheets=external_stylesheets)

df = pd.read_csv('https://plotly.github.io/datasets/country_indicators.csv')

available_indicators = df['Indicator Name'].unique()

app.layout = html.Div([
    html.Div([

        html.Div([
            dcc.Dropdown(
                id='crossfilter-xaxis-column',
                options=[{'label': i, 'value': i} for i in available_indicators],
                value='Fertility rate, total (births per woman)'
            ),
            dcc.RadioItems(
                id='crossfilter-xaxis-type',
                options=[{'label': i, 'value': i} for i in ['Linear', 'Log']],
                value='Linear',
                labelStyle={'display': 'inline-block'}
            )
        ],
        style={'width': '49%', 'display': 'inline-block'}),

        html.Div([
            dcc.Dropdown(
                id='crossfilter-yaxis-column',
                options=[{'label': i, 'value': i} for i in available_indicators],
                value='Life expectancy at birth, total (years)'
            ),
            dcc.RadioItems(
                id='crossfilter-yaxis-type',
                options=[{'label': i, 'value': i} for i in ['Linear', 'Log']],
                value='Linear',
                labelStyle={'display': 'inline-block'}
            )
        ], style={'width': '49%', 'float': 'right', 'display': 'inline-block'})
    ], style={
        'borderBottom': 'thin lightgrey solid',
        'backgroundColor': 'rgb(250, 250, 250)',
        'padding': '10px 5px'
    }),

    html.Div([
        dcc.Graph(
            id='crossfilter-indicator-scatter',
            hoverData={'points': [{'customdata': 'Japan'}]}
        )
    ], style={'width': '49%', 'display': 'inline-block', 'padding': '0 20'}),
    html.Div([
        dcc.Graph(id='x-time-series'),
        dcc.Graph(id='y-time-series'),
    ], style={'display': 'inline-block', 'width': '49%'}),

    html.Div(dcc.Slider(
        id='crossfilter-year--slider',
        min=df['Year'].min(),
        max=df['Year'].max(),
        value=df['Year'].max(),
        marks={str(year): str(year) for year in df['Year'].unique()},
        step=None
    ), style={'width': '49%', 'padding': '0px 20px 20px 20px'})
])


@app.callback(
    dash.dependencies.Output('crossfilter-indicator-scatter', 'figure'),
    [dash.dependencies.Input('crossfilter-xaxis-column', 'value'),
     dash.dependencies.Input('crossfilter-yaxis-column', 'value'),
     dash.dependencies.Input('crossfilter-xaxis-type', 'value'),
     dash.dependencies.Input('crossfilter-yaxis-type', 'value'),
     dash.dependencies.Input('crossfilter-year--slider', 'value')])
def update_graph(xaxis_column_name, yaxis_column_name,
                 xaxis_type, yaxis_type,
                 year_value):
    dff = df[df['Year'] == year_value]

    fig = px.scatter(x=dff[dff['Indicator Name'] == xaxis_column_name]['Value'],
            y=dff[dff['Indicator Name'] == yaxis_column_name]['Value'],
            hover_name=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name']
            )

    fig.update_traces(customdata=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'])

    fig.update_xaxes(title=xaxis_column_name, type='linear' if xaxis_type == 'Linear' else 'log')

    fig.update_yaxes(title=yaxis_column_name, type='linear' if yaxis_type == 'Linear' else 'log')

    fig.update_layout(margin={'l': 40, 'b': 40, 't': 10, 'r': 0}, hovermode='closest')

    return fig


def create_time_series(dff, axis_type, title):

    fig = px.scatter(dff, x='Year', y='Value')

    fig.update_traces(mode='lines+markers')

    fig.update_xaxes(showgrid=False)

    fig.update_yaxes(type='linear' if axis_type == 'Linear' else 'log')

    fig.add_annotation(x=0, y=0.85, xanchor='left', yanchor='bottom',
                       xref='paper', yref='paper', showarrow=False, align='left',
                       bgcolor='rgba(255, 255, 255, 0.5)', text=title)

    fig.update_layout(height=225, margin={'l': 20, 'b': 30, 'r': 10, 't': 10})

    return fig


@app.callback(
    dash.dependencies.Output('x-time-series', 'figure'),
    [dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'),
     dash.dependencies.Input('crossfilter-xaxis-column', 'value'),
     dash.dependencies.Input('crossfilter-xaxis-type', 'value')])
def update_y_timeseries(hoverData, xaxis_column_name, axis_type):
    country_name = hoverData['points'][0]['customdata']
    dff = df[df['Country Name'] == country_name]
    dff = dff[dff['Indicator Name'] == xaxis_column_name]
    title = '<b>{}</b><br>{}'.format(country_name, xaxis_column_name)
    return create_time_series(dff, axis_type, title)


@app.callback(
    dash.dependencies.Output('y-time-series', 'figure'),
    [dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'),
     dash.dependencies.Input('crossfilter-yaxis-column', 'value'),
     dash.dependencies.Input('crossfilter-yaxis-type', 'value')])
def update_x_timeseries(hoverData, yaxis_column_name, axis_type):
    dff = df[df['Country Name'] == hoverData['points'][0]['customdata']]
    dff = dff[dff['Indicator Name'] == yaxis_column_name]
    return create_time_series(dff, axis_type, yaxis_column_name)


app.run_server(mode='jupyterlab', port = 8090, dev_tools_ui=True, #debug=True,
              dev_tools_hot_reload =True, threaded=True)
Run Code Online (Sandbox Code Playgroud)

  • 用户警告:JupyterDash 已弃用,请改用 Dash。有关更多详细信息,请参阅 https://dash.plotly.com/dash-in-jupyter。 (2认同)

Chr*_*s P 9

(免责声明,我帮助维护Dash)

参见https://github.com/plotly/jupyterlab-dash。这是一个JupyterLab扩展,它将Dash嵌入Jupyter中。

Jupyter中的Dash App

另请参见Dash社区论坛中的替代解决方案,例如jupyter主题中的“我可以运行破折号应用程序”

  • 注意:目前尚不支持Windows。 (2认同)
  • 请注意,现在有一个官方的 [JupyterDash](https://medium.com/plotly/introducing-jupyterdash-811f1f57c02e) 库,它也适用于 Jupyter 笔记本和 Google colab。 (2认同)