调用sess.run()时,Tensorflow会挂起

Gre*_*sen 1 python session tensorflow

以下代码将挂起(只有一个CTRLz让我出局).

import tensorflow as tf
import cifar10 # from https://github.com/tensorflow/models/tree/master/tutorials/image/cifar10 (both cifar10.py & cifar10_input.py)

def main():
    print 'TensorFlow version: ',tf.__version__

    with tf.Session() as sess:

    with tf.device('/cpu:0'):
        images, labels = cifar10.distorted_inputs()

    input = tf.constant([[[1, 2, 3], [5, 5, 5]], [[4, 5, 6], [7, 7, 7]], [[7, 8, 9], [9, 9, 9]]])

    one=input[0]
    print "X1 ",type(input), one
    oneval = sess.run(one)
    print "X2 ",type(one), one, type(oneval), oneval

    two=images[0]
    print "Y1 ",type(images), two
    twoval = sess.run(two)
    print "Y2 ",type(two), two, type(twoval), twoval

main()
Run Code Online (Sandbox Code Playgroud)

我得到以下输出(使用Python 2.7.5):

[gpu@centos-7-4 demo]$ python demo.py
TensorFlow version:  1.2.1
2017-07-31 16:06:45.503157: W tensorflow/core/platform/cpu_feature_guard.cc:45] >The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-31 16:06:45.503182: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-31 16:06:45.503187: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
Filling queue with 20000 CIFAR images before starting to train. This will take a few minutes.
X1  class 'tensorflow.python.framework.ops.Tensor'> Tensor("strided_slice:0", shape=(2, 3), dtype=int32)
X2  class 'tensorflow.python.framework.ops.Tensor'> Tensor("strided_slice:0", shape=(2, 3), dtype=int32) <type 'numpy.ndarray'> [[1 2 3] [5 5 5]]
Y1  class 'tensorflow.python.framework.ops.Tensor'> Tensor("strided_slice_1:0", shape=(24, 24, 3), dtype=float32)
^Z
Run Code Online (Sandbox Code Playgroud)

有人有任何建议(或解决方案)吗?

如果有人对后台感兴趣,我的最终目标是将返回的张量转换distorted_inputs()为一组JSON对象.因此,天真的计划是迭代图像的每个元素并拉出值.

Gre*_*sen 6

我在这里找到答案在Python中打印tensorflow张量永远挂起

关键是两条线:

coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
Run Code Online (Sandbox Code Playgroud)