Ale*_*lex 4 machine-learning cross-validation apache-spark pyspark apache-spark-ml
I used cross validation to train a linear regression model using the following code:
from pyspark.ml.evaluation import RegressionEvaluator
lr = LinearRegression(maxIter=maxIteration)
modelEvaluator=RegressionEvaluator()
pipeline = Pipeline(stages=[lr])
paramGrid = ParamGridBuilder().addGrid(lr.regParam, [0.1, 0.01]).addGrid(lr.elasticNetParam, [0, 1]).build()
crossval = CrossValidator(estimator=pipeline,
estimatorParamMaps=paramGrid,
evaluator=modelEvaluator,
numFolds=3)
cvModel = crossval.fit(training)
Run Code Online (Sandbox Code Playgroud)
now I want to draw the roc curve, I used the following code but I get this error:
'LinearRegressionTrainingSummary' object has no attribute 'areaUnderROC'
trainingSummary = cvModel.bestModel.stages[-1].summary
trainingSummary.roc.show()
print("areaUnderROC: " + str(trainingSummary.areaUnderROC))
Run Code Online (Sandbox Code Playgroud)
I also want to check the objectiveHistory at each itaration, I know that I can get it at the end
print("numIterations: %d" % trainingSummary.totalIterations)
print("objectiveHistory: %s" % str(trainingSummary.objectiveHistory))
Run Code Online (Sandbox Code Playgroud)
but I want to get it at each iteration, how can I do this?
此外,我想在测试数据上评估模型,我该怎么做?
prediction = cvModel.transform(test)
Run Code Online (Sandbox Code Playgroud)
我知道我可以写的训练数据集:
print("RMSE: %f" % trainingSummary.rootMeanSquaredError)
print("r2: %f" % trainingSummary.r2)
Run Code Online (Sandbox Code Playgroud)
但是我怎样才能获得这些用于测试数据集的指标呢?
1) ROC 曲线下面积 (AUC)仅针对二元分类定义,因此您不能将其用于回归任务,就像您在这里尝试做的那样。
2) objectiveHistoryfor 每次迭代仅solver在回归中的参数为l-bfgs(文档)时可用;这是一个玩具示例:
spark.version
# u'2.1.1'
from pyspark.ml import Pipeline
from pyspark.ml.linalg import Vectors
from pyspark.ml.evaluation import RegressionEvaluator
from pyspark.ml.regression import LinearRegression
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
dataset = spark.createDataFrame(
[(Vectors.dense([0.0]), 0.2),
(Vectors.dense([0.4]), 1.4),
(Vectors.dense([0.5]), 1.9),
(Vectors.dense([0.6]), 0.9),
(Vectors.dense([1.2]), 1.0)] * 10,
["features", "label"])
lr = LinearRegression(maxIter=5, solver="l-bfgs") # solver="l-bfgs" here
modelEvaluator=RegressionEvaluator()
pipeline = Pipeline(stages=[lr])
paramGrid = ParamGridBuilder().addGrid(lr.regParam, [0.1, 0.01]).addGrid(lr.elasticNetParam, [0, 1]).build()
crossval = CrossValidator(estimator=lr,
estimatorParamMaps=paramGrid,
evaluator=modelEvaluator,
numFolds=3)
cvModel = crossval.fit(dataset)
trainingSummary = cvModel.bestModel.summary
trainingSummary.totalIterations
# 2
trainingSummary.objectiveHistory # one value for each iteration
# [0.49, 0.4511834723904831]
Run Code Online (Sandbox Code Playgroud)
3) 您已经定义了一个RegressionEvaluator可用于评估测试集的 a,但是,如果不带参数使用,则它假定为 RMSE 度量;这是一种使用不同指标定义评估器并将它们应用于您的测试集的方法(继续上面的代码):
test = spark.createDataFrame(
[(Vectors.dense([0.0]), 0.2),
(Vectors.dense([0.4]), 1.1),
(Vectors.dense([0.5]), 0.9),
(Vectors.dense([0.6]), 1.0)],
["features", "label"])
modelEvaluator.evaluate(cvModel.transform(test)) # rmse by default, if not specified
# 0.35384585061028506
eval_rmse = RegressionEvaluator(metricName="rmse")
eval_r2 = RegressionEvaluator(metricName="r2")
eval_rmse.evaluate(cvModel.transform(test)) # same as above
# 0.35384585061028506
eval_r2.evaluate(cvModel.transform(test))
# -0.001655087952929124
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
10853 次 |
| 最近记录: |