计算pandas数据框中列表中的列中是否存在值

Nob*_*bel 3 python apply dataframe pandas

我的数据框中有2列

  1. 客户“ p”购买的产品ID
  2. 相似客户购买的产品ID列表“ p_list”

    df = pd.DataFrame({'p': [12, 4, 5, 6, 7, 7, 6,5],'p_list':[[12,1,5], [3,1],[8,9,11], [6,7,9], [7,1,2],[12,9,8], [6,1,15],[6,8,9,11]]})
    
    Run Code Online (Sandbox Code Playgroud)

我想检查“ p_list”上是否存在“ p”,因此我应用了此代码

df["exist"]= df.apply(lambda r: 1 if r["p"] in r["p_list"] else 0, axis=1)
Run Code Online (Sandbox Code Playgroud)

问题是我在此数据帧中大约有5000万行,因此执行需要很长时间。

有没有更有效的方法来计算此列?

谢谢。

jez*_*ael 6

您可以使用list comprehension,最后将True, False值转换为int

df["exist"] = [r[0] in r[1]  for r in zip(df["p"], df["p_list"])]
df["exist"] = df["exist"].astype(int)
print (df)
    p         p_list  exist
0  12     [12, 1, 5]      1
1   4         [3, 1]      0
2   5     [8, 9, 11]      0
3   6      [6, 7, 9]      1
4   7      [7, 1, 2]      1
5   7     [12, 9, 8]      0
6   6     [6, 1, 15]      1
7   5  [6, 8, 9, 11]      0
Run Code Online (Sandbox Code Playgroud)
df["exist"] = [int(r[0] in r[1])  for r in zip(df["p"], df["p_list"])]
print (df)
    p         p_list  exist
0  12     [12, 1, 5]      1
1   4         [3, 1]      0
2   5     [8, 9, 11]      0
3   6      [6, 7, 9]      1
4   7      [7, 1, 2]      1
5   7     [12, 9, 8]      0
6   6     [6, 1, 15]      1
7   5  [6, 8, 9, 11]      0
Run Code Online (Sandbox Code Playgroud)

时间

#[8000 rows x 2 columns]
df = pd.concat([df]*1000).reset_index(drop=True)
print (df)

In [89]: %%timeit
    ...: df["exist2"] = [r[0] in r[1]  for r in zip(df["p"], df["p_list"])]
    ...: df["exist2"] = df["exist2"].astype(int)
    ...: 
100 loops, best of 3: 6.07 ms per loop

In [90]: %%timeit
    ...: df["exist"] = [1 if r[0] in r[1] else 0  for r in zip(df["p"], df["p_list"])]
    ...: 
100 loops, best of 3: 7.16 ms per loop

In [91]: %%timeit
    ...: df["exist"] = [int(r[0] in r[1])  for r in zip(df["p"], df["p_list"])]
    ...: 
100 loops, best of 3: 9.23 ms per loop

In [92]: %%timeit
    ...: df['exist1'] = df.apply(lambda x: x.p in x.p_list, axis=1).astype(int)
    ...: 
1 loop, best of 3: 370 ms per loop

In [93]: %%timeit
    ...: df["exist"]= df.apply(lambda r: 1 if r["p"] in r["p_list"] else 0, axis=1)
1 loop, best of 3: 310 ms per loop
Run Code Online (Sandbox Code Playgroud)