tdu*_*ube 19 python python-2.7 tensorflow tensorflow-gpu
我无法optimize_for_inference
在一个简单的,保存的TensorFlow图(Python 2.7;安装包pip install tensorflow-gpu==1.0.1
)上成功运行该模块.
这是我的Python脚本,用于生成并保存一个简单的图形,以便为我的输入x
placeholder
操作添加5 .
import tensorflow as tf
# make and save a simple graph
G = tf.Graph()
with G.as_default():
x = tf.placeholder(dtype=tf.float32, shape=(), name="x")
a = tf.Variable(5.0, name="a")
y = tf.add(a, x, name="y")
saver = tf.train.Saver()
with tf.Session(graph=G) as sess:
sess.run(tf.global_variables_initializer())
out = sess.run(fetches=[y], feed_dict={x: 1.0})
print(out)
saver.save(sess=sess, save_path="test_model")
Run Code Online (Sandbox Code Playgroud)
我有一个简单的恢复脚本,可以重新创建已保存的图形并恢复图形参数.保存/恢复脚本都生成相同的输出.
import tensorflow as tf
# Restore simple graph and test model output
G = tf.Graph()
with tf.Session(graph=G) as sess:
# recreate saved graph (structure)
saver = tf.train.import_meta_graph('./test_model.meta')
# restore net params
saver.restore(sess, tf.train.latest_checkpoint('./'))
x = G.get_operation_by_name("x").outputs[0]
y = G.get_operation_by_name("y").outputs
out = sess.run(fetches=[y], feed_dict={x: 1.0})
print(out[0])
Run Code Online (Sandbox Code Playgroud)
但是,虽然我对优化没有太多期待,但当我尝试优化图形进行推理时,我收到以下错误消息.预期的输出节点似乎不在保存的图形中.
$ python -m tensorflow.python.tools.optimize_for_inference --input test_model.data-00000-of-00001 --output opt_model --input_names=x --output_names=y
Traceback (most recent call last):
File "/usr/lib/python2.7/runpy.py", line 174, in _run_module_as_main
"__main__", fname, loader, pkg_name)
File "/usr/lib/python2.7/runpy.py", line 72, in _run_code
exec code in run_globals
File "/{path}/lib/python2.7/site-packages/tensorflow/python/tools/optimize_for_inference.py", line 141, in <module>
app.run(main=main, argv=[sys.argv[0]] + unparsed)
File "/{path}/local/lib/python2.7/site-packages/tensorflow/python/platform/app.py", line 44, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "/{path}/lib/python2.7/site-packages/tensorflow/python/tools/optimize_for_inference.py", line 90, in main
FLAGS.output_names.split(","), FLAGS.placeholder_type_enum)
File "/{path}/local/lib/python2.7/site-packages/tensorflow/python/tools/optimize_for_inference_lib.py", line 91, in optimize_for_inference
placeholder_type_enum)
File "/{path}/local/lib/python2.7/site-packages/tensorflow/python/tools/strip_unused_lib.py", line 71, in strip_unused
output_node_names)
File "/{path}/local/lib/python2.7/site-packages/tensorflow/python/framework/graph_util_impl.py", line 141, in extract_sub_graph
assert d in name_to_node_map, "%s is not in graph" % d
AssertionError: y is not in graph
Run Code Online (Sandbox Code Playgroud)
进一步的调查让我检查了保存图表的检查点,该图表只显示了1个张量(a
,没有x
和没有y
).
(tf-1.0.1) $ python -m tensorflow.python.tools.inspect_checkpoint --file_name ./test_model --all_tensors
tensor_name: a
5.0
Run Code Online (Sandbox Code Playgroud)
x
,并y
在检查点?是因为它们是操作而不是张量?optimize_for_inference
模块提供输入和输出名称,如何构建图形以便我可以引用输入和输出节点?vij*_*y m 46
以下是有关如何优化推理的详细指南:
该optimize_for_inference
模块将frozen binary GraphDef
文件作为输入并输出optimized Graph Def
可用于推理的文件.并且frozen binary GraphDef file
需要使用模块freeze_graph
,该模块将a GraphDef proto
,a SaverDef proto
和一组变量存储在检查点文件中.实现这一目标的步骤如下:
# make and save a simple graph
G = tf.Graph()
with G.as_default():
x = tf.placeholder(dtype=tf.float32, shape=(), name="x")
a = tf.Variable(5.0, name="a")
y = tf.add(a, x, name="y")
saver = tf.train.Saver()
with tf.Session(graph=G) as sess:
sess.run(tf.global_variables_initializer())
out = sess.run(fetches=[y], feed_dict={x: 1.0})
# Save GraphDef
tf.train.write_graph(sess.graph_def,'.','graph.pb')
# Save checkpoint
saver.save(sess=sess, save_path="test_model")
Run Code Online (Sandbox Code Playgroud)
python -m tensorflow.python.tools.freeze_graph --input_graph graph.pb --input_checkpoint test_model --output_graph graph_frozen.pb --output_node_names=y
Run Code Online (Sandbox Code Playgroud)
python -m tensorflow.python.tools.optimize_for_inference --input graph_frozen.pb --output graph_optimized.pb --input_names=x --output_names=y
Run Code Online (Sandbox Code Playgroud)
with tf.gfile.GFile('graph_optimized.pb', 'rb') as f:
graph_def_optimized = tf.GraphDef()
graph_def_optimized.ParseFromString(f.read())
G = tf.Graph()
with tf.Session(graph=G) as sess:
y, = tf.import_graph_def(graph_def_optimized, return_elements=['y:0'])
print('Operations in Optimized Graph:')
print([op.name for op in G.get_operations()])
x = G.get_tensor_by_name('import/x:0')
out = sess.run(y, feed_dict={x: 1.0})
print(out)
#Output
#Operations in Optimized Graph:
#['import/x', 'import/a', 'import/y']
#6.0
Run Code Online (Sandbox Code Playgroud)
如果有多个输出节点,则指定:output_node_names = 'boxes, scores, classes'
并导入图形,
boxes,scores,classes, = tf.import_graph_def(graph_def_optimized, return_elements=['boxes:0', 'scores:0', 'classes:0'])
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
9673 次 |
最近记录: |