如何获得决策树的ROC曲线?

kan*_*and 2 python scikit-learn auc data-science

我试图找到决策树的ROC曲线AUROC曲线.我的代码是这样的

clf.fit(x,y)
y_score = clf.fit(x,y).decision_function(test[col])
pred = clf.predict_proba(test[col])
print(sklearn.metrics.roc_auc_score(actual,y_score))
fpr,tpr,thre = sklearn.metrics.roc_curve(actual,y_score)
Run Code Online (Sandbox Code Playgroud)

输出:

 Error()
'DecisionTreeClassifier' object has no attribute 'decision_function'
Run Code Online (Sandbox Code Playgroud)

基本上,错误是在找到时出现的y_score.请解释一下是什么y_score以及如何解决这个问题?

mak*_*kis 5

首先,DecisionTreeClassifier 没有属性decision_function.

如果我从你的代码结构中猜到​​,你看到了这个例子

在这种情况下,分类器不是决策树,而是支持decision_function方法的OneVsRestClassifier.

您可以在此处查看可用属性DecisionTreeClassifier

一种可能的方法是对进行二值化,然后为每个类计算auc:

例:

from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.tree import DecisionTreeClassifier
from scipy import interp


iris = datasets.load_iris()
X = iris.data
y = iris.target

y = label_binarize(y, classes=[0, 1, 2])
n_classes = y.shape[1]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0)

classifier = DecisionTreeClassifier()

y_score = classifier.fit(X_train, y_train).predict(X_test)

fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
    fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
    roc_auc[i] = auc(fpr[i], tpr[i])

# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

#ROC curve for a specific class here for the class 2
roc_auc[2]
Run Code Online (Sandbox Code Playgroud)

结果

0.94852941176470573
Run Code Online (Sandbox Code Playgroud)