我有两个numpy蒙面数组:
>>> x
masked_array(data = [1 2 -- 4],
mask = [False False True False],
fill_value = 999999)
>>> y
masked_array(data = [4 -- 0 4],
mask = [False True False False],
fill_value = 999999)
Run Code Online (Sandbox Code Playgroud)
如果我试图分裂x的y,当一个操作数被屏蔽不实际执行除法运算,所以我没有得到一个除以零错误.
>>> x/y
masked_array(data = [0.25 -- -- 1.0],
mask = [False True True False],
fill_value = 1e+20)
Run Code Online (Sandbox Code Playgroud)
如果我定义自己的除法函数,这甚至可以工作div:
>>> def div(a,b):
return a/b
>>> div(x, y)
masked_array(data = [0.25 -- -- 1.0],
mask = [False True True False],
fill_value = 1e+20)
Run Code Online (Sandbox Code Playgroud)
但是,如果我用我的函数包装vectorize,则在屏蔽值上调用该函数,并且出现错误:
>>> np.vectorize(div)(x, y)
Traceback (most recent call last):
File "<input>", line 1, in <module>
File "/usr/lib64/python3.4/site-packages/numpy/lib/function_base.py", line 1811, in __call__
return self._vectorize_call(func=func, args=vargs)
File "/usr/lib64/python3.4/site-packages/numpy/lib/function_base.py", line 1880, in _vectorize_call
outputs = ufunc(*inputs)
File "<input>", line 2, in div
ZeroDivisionError: division by zero
Run Code Online (Sandbox Code Playgroud)
有没有办法可以使用数组参数调用函数,并且只有在所有参数都被取消屏蔽时才执行该函数?
调用函数直接工作,因为,当你调用div(x,y),div的论点a,并b成为MaskedArrays x和y,以及产生的代码a/b是x.__div__(y)(或__truediv__).
现在,因为它x是一个MaskedArray,它具有按照其规则在另一个MaskedArray上执行除法的智能.
但是,当你向量化它时,你的div函数不会看到任何MaskedArrays,只是scalars,int在这种情况下是几个.所以,当它尝试a/b第三个项目时,它将是"零件",你就会得到错误.
MaskedArray的实现似乎是基于为MaskedArrays重新实现Numpy的大部分内容.例如,请参阅您同时拥有numpy.log和numpy.ma.log.比较在包含负值的MaskedArray上运行它们.两者实际上都返回了一个正确的MaskedArray,但是朴素的numpy版本也会输出一些关于除以零的抱怨:
In [116]: x = masked_array(data = [-1, 2, 0, 4],
...: mask = [False, False, True, False],
...: fill_value = 999999)
In [117]: numpy.log(x)
/usr/bin/ipython:1: RuntimeWarning: divide by zero encountered in log
#!/usr/bin/python3
/usr/bin/ipython:1: RuntimeWarning: invalid value encountered in log
#!/usr/bin/python3
Out[117]:
masked_array(data = [-- 0.6931471805599453 -- 1.3862943611198906],
mask = [ True False True False],
fill_value = 999999)
In [118]: numpy.ma.log(x)
Out[118]:
masked_array(data = [-- 0.6931471805599453 -- 1.3862943611198906],
mask = [ True False True False],
fill_value = 999999)
Run Code Online (Sandbox Code Playgroud)
如果在普通列表上运行numpy.log版本,它将返回nan并且inf对于无效值,不会抛出类似于ZeroDivisionError您获得的错误.
In [138]: a = [1,-1,0]
In [139]: numpy.log(a)
/usr/bin/ipython:1: RuntimeWarning: divide by zero encountered in log
#!/usr/bin/python3
/usr/bin/ipython:1: RuntimeWarning: invalid value encountered in log
#!/usr/bin/python3
Out[139]: array([ 0., nan, -inf])
Run Code Online (Sandbox Code Playgroud)
有了这个,我看到了两个选择:首先,对于你列出的更简单的情况,你可以用no-op替换坏值:1 in divcase(注意数据与你的略有不同,因为有零)你没有标记为蒙面):
x = masked_array(data = [1, 2, 0, 4],
mask = [False, False, True, False],
fill_value = 999999)
y = masked_array(data = [4, 0, 0, 4],
mask = [False, True, True, False],
fill_value = 999999)
In [153]: numpy.vectorize(div)(x,y.filled(1))
Out[153]:
masked_array(data = [0.25 2.0 -- 1.0],
mask = [False False True False],
fill_value = 999999)
Run Code Online (Sandbox Code Playgroud)
这种方法的问题是填充值在结果中被列为非掩码,这可能不是您想要的.
现在,div可能只是一个例子,你可能想要更复杂的行为,而没有'no-op'参数.在这种情况下,你可以像Numpy那样做log,并避免抛出异常,而是返回一个特定的值.在这种情况下,numpy.ma.masked. div的实现变成了这样:
In [154]: def div(a,b):
...: try:
...: return a/b
...: except Exception as e:
...: warnings.warn (str(e))
...: return numpy.ma.masked
...:
...:
In [155]: numpy.vectorize(div)(x,y)
/usr/bin/ipython:5: UserWarning: division by zero
start_ipython()
/usr/lib/python3.6/site-packages/numpy/lib/function_base.py:2813: UserWarning: Warning: converting a masked element to nan.
res = array(outputs, copy=False, subok=True, dtype=otypes[0])
Out[155]:
masked_array(data = [0.25 -- -- 1.0],
mask = [False True True False],
fill_value = 999999)
Run Code Online (Sandbox Code Playgroud)
但也许您已经拥有该功能,并且不想更改它,或者它是第三方.在这种情况下,您可以使用更高阶的函数:
In [164]: >>> def div(a,b):
...: return a/b
...:
In [165]: def masked_instead_of_error (f):
...: def wrapper (*args, **kwargs):
...: try:
...: return f(*args, **kwargs)
...: except:
...: return numpy.ma.masked
...: return wrapper
...:
In [166]: numpy.vectorize(masked_instead_of_error(div))(x,y)
/usr/lib/python3.6/site-packages/numpy/lib/function_base.py:2813: UserWarning: Warning: converting a masked element to nan.
res = array(outputs, copy=False, subok=True, dtype=otypes[0])
Out[166]:
masked_array(data = [0.25 -- -- 1.0],
mask = [False True True False],
fill_value = 999999)
Run Code Online (Sandbox Code Playgroud)
在上面的实现中,使用警告可能是也可能不是一个好主意.您可能还希望限制返回时要捕获的异常类型numpy.ma.masked.
另请注意,它masked_instead_of_error已准备好用作函数的装饰器,因此您不必每次都使用它.