我正在尝试运行我认为简单的代码以消除所有NaN的列,但无法使其工作(axis = 1在消除行时工作得很好):
import pandas as pd
import numpy as np
df = pd.DataFrame({'a':[1,2,np.nan,np.nan], 'b':[4,np.nan,6,np.nan], 'c':[np.nan, 8,9,np.nan], 'd':[np.nan,np.nan,np.nan,np.nan]})
df = df[df.notnull().any(axis = 0)]
print df
Run Code Online (Sandbox Code Playgroud)
完整错误:
raise IndexingError('Unalignable boolean Series provided as 'pandas.core.indexing.IndexingError: Unalignable boolean Series provided as indexer (index of the boolean Series and of the indexed object do not match
预期产量:
a b c
0 1.0 4.0 NaN
1 2.0 NaN 8.0
2 NaN 6.0 9.0
3 NaN NaN NaN
Run Code Online (Sandbox Code Playgroud)
jez*_*ael 16
你需要loc,因为按列过滤:
print (df.notnull().any(axis = 0))
a True
b True
c True
d False
dtype: bool
df = df.loc[:, df.notnull().any(axis = 0)]
print (df)
a b c
0 1.0 4.0 NaN
1 2.0 NaN 8.0
2 NaN 6.0 9.0
3 NaN NaN NaN
Run Code Online (Sandbox Code Playgroud)
或过滤列,然后选择[]:
print (df.columns[df.notnull().any(axis = 0)])
Index(['a', 'b', 'c'], dtype='object')
df = df[df.columns[df.notnull().any(axis = 0)]]
print (df)
a b c
0 1.0 4.0 NaN
1 2.0 NaN 8.0
2 NaN 6.0 9.0
3 NaN NaN NaN
Run Code Online (Sandbox Code Playgroud)
或者dropna使用参数how='all'删除NaN仅由s 填充的所有列:
print (df.dropna(axis=1, how='all'))
a b c
0 1.0 4.0 NaN
1 2.0 NaN 8.0
2 NaN 6.0 9.0
3 NaN NaN NaN
Run Code Online (Sandbox Code Playgroud)
dropna您可以与axis=1和 一起使用thresh=1:
In[19]:
df.dropna(axis=1, thresh=1)
Out[19]:
a b c
0 1.0 4.0 NaN
1 2.0 NaN 8.0
2 NaN 6.0 9.0
3 NaN NaN NaN
Run Code Online (Sandbox Code Playgroud)
这将删除任何没有至少 1 个非 NaN 值的列,这意味着任何包含所有值的列都NaN将被删除
您尝试失败的原因是因为布尔掩码:
In[20]:
df.notnull().any(axis = 0)
Out[20]:
a True
b True
c True
d False
dtype: bool
Run Code Online (Sandbox Code Playgroud)
无法在默认使用的索引上对齐,因为这会在列上生成布尔掩码