Xia*_*hao 5 model analysis path structural-equation-model
我正在运行一个路径分析模型,但似乎模型拟合指数是完美的:CFI = 1.00,RMSEA = 0.00。然而,完美的模型拟合通常表明模型饱和。但似乎我的模型并非如此,因为我有额外的自由度。那么,如何解释CFI和RMSEA呢?非常感谢你的帮助!
lavaan (0.5-21) converged normally after 39 iterations
Number of observations 109
Number of missing patterns 6
Estimator ML
Minimum Function Test Statistic 6.199
Degrees of freedom 11
P-value (Chi-square) 0.860
Model test baseline model:
Minimum Function Test Statistic 150.084
Degrees of freedom 20
P-value 0.000
User model versus baseline model:
Comparative Fit Index (CFI) 1.000
Tucker-Lewis Index (TLI) 1.067
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -1000.419
Loglikelihood unrestricted model (H1) -997.320
Number of free parameters 19
Akaike (AIC) 2038.838
Bayesian (BIC) 2089.974
Sample-size adjusted Bayesian (BIC) 2029.936
Root Mean Square Error of Approximation:
RMSEA 0.000
90 Percent Confidence Interval 0.000 0.054
P-value RMSEA <= 0.05 0.941
Standardized Root Mean Square Residual:
SRMR 0.052
Parameter Estimates:
Information Observed
Standard Errors Standard
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
SelfEsteem ~
EnglishNam (a) -0.382 0.184 -2.073 0.038 -0.382 -0.200
Well_Being ~
SelfEsteem (b) 0.668 0.095 6.998 0.000 0.668 0.558
EnglishName ~
RmmbrChnsN -0.057 0.035 -1.623 0.105 -0.057 -0.204
PrnncChnsN -0.064 0.032 -1.981 0.048 -0.064 -0.249
MentalHealth ~
SelfEsteem (c) 0.779 0.088 8.846 0.000 0.779 0.656
GeneralPhysicalHealth ~
SelfEsteem (d) 0.335 0.099 3.368 0.001 0.335 0.314
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.Well_Being ~~
.MentalHealth 0.085 0.079 1.076 0.282 0.085 0.105
.GnrlPhysclHlth 0.196 0.091 2.153 0.031 0.196 0.214
.MentalHealth ~~
.GnrlPhysclHlth 0.191 0.083 2.308 0.021 0.191 0.233
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.SelfEsteem 5.605 0.126 44.424 0.000 5.605 5.880
.Well_Being 0.860 0.525 1.638 0.101 0.860 0.754
.EnglishName 1.014 0.132 7.701 0.000 1.014 2.031
.MentalHealth 0.708 0.485 1.460 0.144 0.708 0.626
.GnrlPhysclHlth 3.756 0.548 6.854 0.000 3.756 3.700
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.SelfEsteem 0.872 0.119 7.356 0.000 0.872 0.960
.Well_Being 0.896 0.122 7.329 0.000 0.896 0.689
.EnglishName 0.206 0.029 7.127 0.000 0.206 0.826
.MentalHealth 0.728 0.101 7.201 0.000 0.728 0.569
.GnrlPhysclHlth 0.929 0.129 7.211 0.000 0.929 0.901
Run Code Online (Sandbox Code Playgroud)
我在网上读到,当卡方贡献小于模型任何给定步骤的自由度时,就会存在建模问题(即,测试配置不变性的基线拟合或比较度量模型与配置模型的步骤等)。以前从未遇到过这个问题,我不太明白。然而,从整体上看,所有具有相应“完美契合”的模型似乎都是这种情况。