我已经定义了以下功能:
def GMM(s1, s2, s3, s4, s5, a):
"""The GMM objective function.
Arguments
---------
si: float
standard deviations of preference distribution
a: float
marginal utility of residutal income
Paramters
---------
Px: array (1,ns)
projector onto nonprice characteristic space
xk, z: arrays (J, 5) and (J, 12)
nonprice char. and instruments
invW: array (12, 12)
GMM weight matrix
Returns
-------
float."""
delta = invert(s1, s2, s3, s4, s5, a, delta0) # Invert market shares to get mean utility
bmean = np.dot(Px, delta) # Project delta onto charancteristic space
xihat = delta - np.dot(xk, bmean) # Compute implied unobservable prod. quality
temp1 = np.dot(xihat.T, z)
if np.any(np.isnan(delta)) == True:
value = 1e+10
else:
value = np.dot(np.dot(temp1, invW), temp1.T)
return np.sqrt(value)
Run Code Online (Sandbox Code Playgroud)
我的问题涉及delta函数内部的变量绑定.在函数之外我将设置初始值delta0.现在,最终我将最小化此功能.我希望发生的是每次函数GMM评估时,delta从之前的评估中用作新的delta0.我尝试将其定义delta0为全局变量,但它似乎没有用......可能这是我的错误.虽然,我在这里读到,一般来说这是一个糟糕的方法.有什么建议?
Lau*_*uce 25
有多种方法可以实现您的目标.在以下示例中,delta保存在函数调用之间.
1-级
class Example:
def __init__(self, value):
self.delta = value
def gmm(self):
self.delta += 1
return self.delta
e = Example(0)
print e.gmm()
Run Code Online (Sandbox Code Playgroud)
2-发电机
def gmm():
delta = 0
while True:
delta += 1
yield delta
for v in gmm():
print v
Run Code Online (Sandbox Code Playgroud)
3-功能属性
def gmm():
gmm.delta += 1
return delta
gmm.delta = 0
Run Code Online (Sandbox Code Playgroud)
4-全局变量(如你所说的那样气馁):
delta = 0
def gmm():
global delta
delta += 1
return delta
Run Code Online (Sandbox Code Playgroud)
等等...
pyt*_*Foo 13
globalVariable = 0
def test():
global globalVariable
globalVariable = 10
test()
print globalVariable
Run Code Online (Sandbox Code Playgroud)
您可以通过这种方式编辑全局变量.