Lea*_*ava 5 python numpy python-2.7 pandas
我想考虑使用加权随机选择一个值Pandas。
df:
0 1 2 3 4 5
0 40 5 20 10 35 25
1 24 3 12 6 21 15
2 72 9 36 18 63 45
3 8 1 4 2 7 5
4 16 2 8 4 14 10
5 48 6 24 12 42 30
Run Code Online (Sandbox Code Playgroud)
我知道使用np.random.choice,例如:
x = np.random.choice(
['0-0','0-1',etc.],
1,
p=[0.4,0.24 etc.]
)
Run Code Online (Sandbox Code Playgroud)
因此,我想以类似于np.random.choicefrom的样式/替代方法来获取输出df,但使用Pandas。与如上所述手动插入值相比,我想以一种更有效的方式进行操作。
使用np.random.choice我知道所有值都必须加起来1。我不确定如何解决这个问题,也不确定使用来基于加权随机选择一个值Pandas。
当指代输出时,如果随机选择的权重例如为40,则输出将位于0-0中,因为它位于那个中column 0,row 0依此类推。
堆叠数据帧:
stacked = df.stack()
Run Code Online (Sandbox Code Playgroud)
标准化权重(使它们加起来为 1):
weights = stacked / stacked.sum()
# As GeoMatt22 pointed out, this part is not necessary. See the other comment.
Run Code Online (Sandbox Code Playgroud)
然后使用示例:
stacked.sample(1, weights=weights)
Out:
1 2 12
dtype: int64
# Or without normalization, stacked.sample(1, weights=stacked)
Run Code Online (Sandbox Code Playgroud)
DataFrame.sample 方法允许您从行或列中采样。考虑一下:
df.sample(1, weights=[0.4, 0.3, 0.1, 0.1, 0.05, 0.05])
Out:
0 1 2 3 4 5
1 24 3 12 6 21 15
Run Code Online (Sandbox Code Playgroud)
它选择一行(第一行有 40% 的机会,第二行有 30% 的机会等等)
这也是可能的:
df.sample(1, weights=[0.4, 0.3, 0.1, 0.1, 0.05, 0.05], axis=1)
Out:
1
0 5
1 3
2 9
3 1
4 2
5 6
Run Code Online (Sandbox Code Playgroud)
相同的过程,但 40% 的机会与第一列相关联,我们正在从列中进行选择。但是,您的问题似乎暗示您不想选择行或列 - 您想选择里面的单元格。因此,我将维度从 2D 更改为 1D。
df.stack()
Out:
0 0 40
1 5
2 20
3 10
4 35
5 25
1 0 24
1 3
2 12
3 6
4 21
5 15
2 0 72
1 9
2 36
3 18
4 63
5 45
3 0 8
1 1
2 4
3 2
4 7
5 5
4 0 16
1 2
2 8
3 4
4 14
5 10
5 0 48
1 6
2 24
3 12
4 42
5 30
dtype: int64
Run Code Online (Sandbox Code Playgroud)
因此,如果我现在从中采样,我将同时采样一行和一列。例如:
df.stack().sample()
Out:
1 0 24
dtype: int64
Run Code Online (Sandbox Code Playgroud)
选择第 1 行和第 0 列。
| 归档时间: |
|
| 查看次数: |
2769 次 |
| 最近记录: |