CUDA动态并行,性能不佳

Cri*_*rro 6 c++ cuda dynamic-parallelism cuda-streams

使用CUDA Dynamic Parallelism时,我们遇到了性能问题.目前,CDP的表现比传统方法慢至少3倍.我们制作了最简单的可重现代码来显示这个问题,即将数组的所有元素的值增加+1.即

a[0,0,0,0,0,0,0,.....,0] --> kernel +1 --> a[1,1,1,1,1,1,1,1,1]
Run Code Online (Sandbox Code Playgroud)

这个简单示例的目的只是为了查看CDP是否可以像其他CDP一样执行,或者是否存在严重的开销.

代码在这里:

#include <stdio.h>
#include <cuda.h>
#define BLOCKSIZE 512

__global__ void kernel_parent(int *a, int n, int N);
__global__ void kernel_simple(int *a, int n, int N, int offset);


// N is the total array size
// n is the worksize for a kernel (one third of N)
__global__ void kernel_parent(int *a, int n, int N){
    cudaStream_t s1, s2;
    cudaStreamCreateWithFlags(&s1, cudaStreamNonBlocking);
    cudaStreamCreateWithFlags(&s2, cudaStreamNonBlocking);

    int tid = blockIdx.x * blockDim.x + threadIdx.x;
    if(tid == 0){
        dim3 block(BLOCKSIZE, 1, 1);
        dim3 grid( (n + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);

        kernel_simple<<< grid, block, 0, s1 >>> (a, n, N, n);
        kernel_simple<<< grid, block, 0, s2 >>> (a, n, N, 2*n);
    }

    a[tid] += 1;
}


__global__ void kernel_simple(int *a, int n, int N, int offset){
    int tid = blockIdx.x * blockDim.x + threadIdx.x;
    int pos = tid + offset;
    if(pos < N){
        a[pos] += 1;
    }
}

int main(int argc, char **argv){
    if(argc != 3){
        fprintf(stderr, "run as ./prog n method\nn multiple of 32 eg: 1024, 1048576 (1024^2), 4194304 (2048^2), 16777216 (4096^2)\nmethod:\n0 (traditional)  \n1 (dynamic parallelism)\n2 (three kernels using unique streams)\n");
        exit(EXIT_FAILURE);
    }
    int N = atoi(argv[1])*3;
    int method = atoi(argv[2]);
    // init array as 0
    int *ah, *ad;
    printf("genarray of 3*N = %i.......", N); fflush(stdout);
    ah = (int*)malloc(sizeof(int)*N);
    for(int i=0; i<N; ++i){
        ah[i] = 0;
    }
    printf("done\n"); fflush(stdout);

    // malloc and copy array to gpu
    printf("cudaMemcpy:Host->Device..........", N); fflush(stdout);
    cudaMalloc(&ad, sizeof(int)*N);
    cudaMemcpy(ad, ah, sizeof(int)*N, cudaMemcpyHostToDevice);
    printf("done\n"); fflush(stdout);

    // kernel launch (timed)
    cudaStream_t s1, s2, s3;
    cudaStreamCreateWithFlags(&s1, cudaStreamNonBlocking);
    cudaStreamCreateWithFlags(&s2, cudaStreamNonBlocking);
    cudaStreamCreateWithFlags(&s3, cudaStreamNonBlocking);
    cudaEvent_t start, stop;
    float rtime = 0.0f;
    cudaEventCreate(&start); 
    cudaEventCreate(&stop);
    printf("Kernel...........................", N); fflush(stdout);
    if(method == 0){
        // CLASSIC KERNEL LAUNCH
        dim3 block(BLOCKSIZE, 1, 1);
        dim3 grid( (N + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
        cudaEventRecord(start, 0);
        kernel_simple<<< grid, block >>> (ad, N, N, 0);
        cudaDeviceSynchronize();
        cudaEventRecord(stop, 0);
    }
    else if(method == 1){
        // DYNAMIC PARALLELISM
        dim3 block(BLOCKSIZE, 1, 1);
        dim3 grid( (N/3 + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
        cudaEventRecord(start, 0);
        kernel_parent<<< grid, block, 0, s1 >>> (ad, N/3, N);
        cudaDeviceSynchronize();
        cudaEventRecord(stop, 0);
    }
    else{
        // THREE CONCURRENT KERNEL LAUNCHES USING STREAMS
        dim3 block(BLOCKSIZE, 1, 1);
        dim3 grid( (N/3 + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
        cudaEventRecord(start, 0);
        kernel_simple<<< grid, block, 0, s1 >>> (ad, N/3, N, 0);
        kernel_simple<<< grid, block, 0, s2 >>> (ad, N/3, N, N/3);
        kernel_simple<<< grid, block, 0, s3 >>> (ad, N/3, N, 2*(N/3));
        cudaDeviceSynchronize();
        cudaEventRecord(stop, 0);
    }
    printf("done\n"); fflush(stdout);


    printf("cudaMemcpy:Device->Host..........", N); fflush(stdout);
    cudaMemcpy(ah, ad, sizeof(int)*N, cudaMemcpyDeviceToHost);
    printf("done\n"); fflush(stdout);

    printf("checking result.................."); fflush(stdout);
    for(int i=0; i<N; ++i){
        if(ah[i] != 1){
            fprintf(stderr, "bad element: a[%i] = %i\n", i, ah[i]);
            exit(EXIT_FAILURE);
        }
    }
    printf("done\n"); fflush(stdout);
    cudaEventSynchronize(stop);
    cudaEventElapsedTime(&rtime, start, stop);
    printf("rtime: %f ms\n", rtime); fflush(stdout);
    return EXIT_SUCCESS;
}
Run Code Online (Sandbox Code Playgroud)

可以编译

nvcc -arch=sm_35 -rdc=true -lineinfo -lcudadevrt -use_fast_math main.cu -o prog
Run Code Online (Sandbox Code Playgroud)

此示例可以使用3种方法计算结果:

  1. 简单内核:在阵列上只传递一个经典内核+1.
  2. 动态并行:从main()调用父内核,它在范围[0,N/3]上执行+1,并且还调用两个子内核.第一个孩子在[N/3,2*N/3]范围内+1,范围[2*N/3,N]中的第二个孩子.使用不同的流启动子节点,以便它们可以并发.
  3. 来自主机的三个流:这个只是从main()启动三个非阻塞流,一个用于阵列的三分之一.

我得到方法0(简单内核)的以下配置文件: 简单的内核 方法1的以下内容(动态并行): 动态并行 方法2的以下内容(来自主机的三个流) 在此输入图像描述 运行时间是这样的:

?  simple-cdp git:(master) ? ./prog 16777216 0
genarray of 3*N = 50331648.......done
cudaMemcpy:Host->Device..........done
Kernel...........................done
cudaMemcpy:Device->Host..........done
checking result..................done
rtime: 1.140928 ms
?  simple-cdp git:(master) ? ./prog 16777216 1
genarray of 3*N = 50331648.......done
cudaMemcpy:Host->Device..........done
Kernel...........................done
cudaMemcpy:Device->Host..........done
checking result..................done
rtime: 5.790048 ms
?  simple-cdp git:(master) ? ./prog 16777216 2
genarray of 3*N = 50331648.......done
cudaMemcpy:Host->Device..........done
Kernel...........................done
cudaMemcpy:Device->Host..........done
checking result..................done
rtime: 1.011936 ms
Run Code Online (Sandbox Code Playgroud)

从图片中可以看出,主要的问题是,在动态并行方法中,父内核在两个子内核完成后花费了过多的时间来关闭,这使得它需要花费3倍或4倍的时间.即使考虑最坏的情况,如果所有三个内核(父级和两个子级)都是串行运行的,那么它应该花费更少.即,每个内核都有N/3个工作,因此整个父内核应该占用大约3个子内核,这要少得多.有没有办法解决这个问题?

编辑:Robert Crovella在评论中解释了子内核以及方法2的序列化现象(非常感谢).内核确实以串行方式运行的事实不会使粗体文本中描述的问题无效(至少现在不是).

Rob*_*lla 5

调用设备运行时是“昂贵的”,就像调用主机运行时是昂贵的一样。在这种情况下,您似乎正在调用设备运行时为每个线程创建流,即使此代码只需要线程 0 的流。

通过修改您的代码以仅请求为线程 0 创建流,我们可以在我们为子内核启动使用单独流的情况和我们不为子内核启动使用单独流的情况之间产生时序奇偶校验:

$ cat t370.cu
#include <stdio.h>
#define BLOCKSIZE 512

__global__ void kernel_parent(int *a, int n, int N);
__global__ void kernel_simple(int *a, int n, int N, int offset);


// N is the total array size
// n is the worksize for a kernel (one third of N)
__global__ void kernel_parent(int *a, int n, int N){
    int tid = blockIdx.x * blockDim.x + threadIdx.x;
    if(tid == 0){
        dim3 block(BLOCKSIZE, 1, 1);
        dim3 grid( (n + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
#ifdef USE_STREAMS
        cudaStream_t s1, s2;
        cudaStreamCreateWithFlags(&s1, cudaStreamNonBlocking);
        cudaStreamCreateWithFlags(&s2, cudaStreamNonBlocking);
        kernel_simple<<< grid, block, 0, s1 >>> (a, n, N, n);
        kernel_simple<<< grid, block, 0, s2 >>> (a, n, N, 2*n);
#else
        kernel_simple<<< grid, block >>> (a, n, N, n);
        kernel_simple<<< grid, block >>> (a, n, N, 2*n);
#endif
// these next 2 lines add noticeably to the overall timing
        cudaError_t err = cudaGetLastError();
        if (err != cudaSuccess) printf("oops1: %d\n", (int)err);
    }

    a[tid] += 1;
}


__global__ void kernel_simple(int *a, int n, int N, int offset){
    int tid = blockIdx.x * blockDim.x + threadIdx.x;
    int pos = tid + offset;
    if(pos < N){
        a[pos] += 1;
    }
}

int main(int argc, char **argv){
    if(argc != 3){
        fprintf(stderr, "run as ./prog n method\nn multiple of 32 eg: 1024, 1048576 (1024^2), 4194304 (2048^2), 16777216 (4096^2)\nmethod:\n0 (traditional)  \n1 (dynamic parallelism)\n2 (three kernels using unique streams)\n");
        exit(EXIT_FAILURE);
    }
    int N = atoi(argv[1])*3;
    int method = atoi(argv[2]);
    // init array as 0
    int *ah, *ad;
    printf("genarray of 3*N = %i.......", N); fflush(stdout);
    ah = (int*)malloc(sizeof(int)*N);
    for(int i=0; i<N; ++i){
        ah[i] = 0;
    }
    printf("done\n"); fflush(stdout);

    // malloc and copy array to gpu
    printf("cudaMemcpy:Host->Device..........", N); fflush(stdout);
    cudaMalloc(&ad, sizeof(int)*N);
    cudaMemcpy(ad, ah, sizeof(int)*N, cudaMemcpyHostToDevice);
    printf("done\n"); fflush(stdout);

    // kernel launch (timed)
    cudaStream_t s1, s2, s3;
    cudaStreamCreateWithFlags(&s1, cudaStreamNonBlocking);
    cudaStreamCreateWithFlags(&s2, cudaStreamNonBlocking);
    cudaStreamCreateWithFlags(&s3, cudaStreamNonBlocking);
    cudaEvent_t start, stop;
    float rtime = 0.0f;
    cudaEventCreate(&start);
    cudaEventCreate(&stop);
    printf("Kernel...........................", N); fflush(stdout);
    if(method == 0){
        // CLASSIC KERNEL LAUNCH
        dim3 block(BLOCKSIZE, 1, 1);
        dim3 grid( (N + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
        cudaEventRecord(start, 0);
        kernel_simple<<< grid, block >>> (ad, N, N, 0);
        cudaDeviceSynchronize();
        cudaEventRecord(stop, 0);
    }
    else if(method == 1){
        // DYNAMIC PARALLELISM
        dim3 block(BLOCKSIZE, 1, 1);
        dim3 grid( (N/3 + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
        cudaEventRecord(start, 0);
        kernel_parent<<< grid, block, 0, s1 >>> (ad, N/3, N);
        cudaDeviceSynchronize();
        cudaEventRecord(stop, 0);
    }
    else{
        // THREE CONCURRENT KERNEL LAUNCHES USING STREAMS
        dim3 block(BLOCKSIZE, 1, 1);
        dim3 grid( (N/3 + BLOCKSIZE - 1)/BLOCKSIZE, 1, 1);
        cudaEventRecord(start, 0);
        kernel_simple<<< grid, block, 0, s1 >>> (ad, N/3, N, 0);
        kernel_simple<<< grid, block, 0, s2 >>> (ad, N/3, N, N/3);
        kernel_simple<<< grid, block, 0, s3 >>> (ad, N/3, N, 2*(N/3));
        cudaDeviceSynchronize();
        cudaEventRecord(stop, 0);
    }
    printf("done\n"); fflush(stdout);


    printf("cudaMemcpy:Device->Host..........", N); fflush(stdout);
    cudaMemcpy(ah, ad, sizeof(int)*N, cudaMemcpyDeviceToHost);
    printf("done\n"); fflush(stdout);

    printf("checking result.................."); fflush(stdout);
    for(int i=0; i<N; ++i){
        if(ah[i] != 1){
            fprintf(stderr, "bad element: a[%i] = %i\n", i, ah[i]);
            exit(EXIT_FAILURE);
        }
    }
    printf("done\n"); fflush(stdout);
    cudaEventSynchronize(stop);
    cudaEventElapsedTime(&rtime, start, stop);
    printf("rtime: %f ms\n", rtime); fflush(stdout);
    return EXIT_SUCCESS;
}
$ nvcc -arch=sm_52 -rdc=true -lcudadevrt -o t370 t370.cu
$ ./t370 16777216 1
genarray of 3*N = 50331648.......done
cudaMemcpy:Host->Device..........done
Kernel...........................done
cudaMemcpy:Device->Host..........done
checking result..................done
rtime: 6.925632 ms
$ nvcc -arch=sm_52 -rdc=true -lcudadevrt -o t370 t370.cu -DUSE_STREAMS
$ ./t370 16777216 1
genarray of 3*N = 50331648.......done
cudaMemcpy:Host->Device..........done
Kernel...........................done
cudaMemcpy:Device->Host..........done
checking result..................done
rtime: 6.673568 ms
$
Run Code Online (Sandbox Code Playgroud)

尽管没有包含在上面的测试输出中,但根据我的测试,这也使 CUDA 动态并行 (CDP) 情况 ( 1) 与非 CDP 情况 ( 0, 2)处于“近似奇偶校验” 。请注意,我们可以通过放弃cudaGetLastError()父内核中的调用(我已将其添加到您的代码中)将上述时间缩短约 1 毫秒(!)。