适用于匿名UID的Apache Spark独立版本(无用户名)

Nav*_*n K 5 openshift docker apache-spark

我正在OpenShift平台上启动Apache Spark从属节点。OpenShift在内部以匿名用户(没有名称但只有UID的用户)启动docker映像。我正在关注异常

17/07/17 16:46:53 INFO SignalUtils: Registered signal handler for INT
12  17/07/17 16:46:55 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
13  Exception in thread "main" java.io.IOException: failure to login
14      at org.apache.hadoop.security.UserGroupInformation.loginUserFromSubject(UserGroupInformation.java:824)
15      at org.apache.hadoop.security.UserGroupInformation.getLoginUser(UserGroupInformation.java:761)
16      at org.apache.hadoop.security.UserGroupInformation.getCurrentUser(UserGroupInformation.java:634)
17      at org.apache.spark.util.Utils$$anonfun$getCurrentUserName$1.apply(Utils.scala:2391)
18      at org.apache.spark.util.Utils$$anonfun$getCurrentUserName$1.apply(Utils.scala:2391)
19      at scala.Option.getOrElse(Option.scala:121)
20      at org.apache.spark.util.Utils$.getCurrentUserName(Utils.scala:2391)
21      at org.apache.spark.SecurityManager.<init>(SecurityManager.scala:221)
22      at org.apache.spark.deploy.worker.Worker$.startRpcEnvAndEndpoint(Worker.scala:714)
23      at org.apache.spark.deploy.worker.Worker$.main(Worker.scala:696)
24      at org.apache.spark.deploy.worker.Worker.main(Worker.scala)
25  Caused by: javax.security.auth.login.LoginException: java.lang.NullPointerException: invalid null input: name
26      at com.sun.security.auth.UnixPrincipal.<init>(UnixPrincipal.java:71)
27      at com.sun.security.auth.module.UnixLoginModule.login(UnixLoginModule.java:133)
28      at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
29      at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
30      at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
31      at java.lang.reflect.Method.invoke(Method.java:497)
32      at javax.security.auth.login.LoginContext.invoke(LoginContext.java:755)
33      at javax.security.auth.login.LoginContext.access$000(LoginContext.java:195)
34      at javax.security.auth.login.LoginContext$4.run(LoginContext.java:682)
35      at javax.security.auth.login.LoginContext$4.run(LoginContext.java:680)
36      at java.security.AccessController.doPrivileged(Native Method)
37      at javax.security.auth.login.LoginContext.invokePriv(LoginContext.java:680)
38      at javax.security.auth.login.LoginContext.login(LoginContext.java:587)
39      at org.apache.hadoop.security.UserGroupInformation.loginUserFromSubject(UserGroupInformation.java:799)
40      at org.apache.hadoop.security.UserGroupInformation.getLoginUser(UserGroupInformation.java:761)
41      at org.apache.hadoop.security.UserGroupInformation.getCurrentUser(UserGroupInformation.java:634)
42      at org.apache.spark.util.Utils$$anonfun$getCurrentUserName$1.apply(Utils.scala:2391)
43      at org.apache.spark.util.Utils$$anonfun$getCurrentUserName$1.apply(Utils.scala:2391)
44      at scala.Option.getOrElse(Option.scala:121)
45      at org.apache.spark.util.Utils$.getCurrentUserName(Utils.scala:2391)
46      at org.apache.spark.SecurityManager.<init>(SecurityManager.scala:221)
47      at org.apache.spark.deploy.worker.Worker$.startRpcEnvAndEndpoint(Worker.scala:714)
48      at org.apache.spark.deploy.worker.Worker$.main(Worker.scala:696)
49      at org.apache.spark.deploy.worker.Worker.main(Worker.scala)
50  
51      at javax.security.auth.login.LoginContext.invoke(LoginContext.java:856)
52      at javax.security.auth.login.LoginContext.access$000(LoginContext.java:195)
53      at javax.security.auth.login.LoginContext$4.run(LoginContext.java:682)
54      at javax.security.auth.login.LoginContext$4.run(LoginContext.java:680)
55      at java.security.AccessController.doPrivileged(Native Method)
56      at javax.security.auth.login.LoginContext.invokePriv(LoginContext.java:680)
57      at javax.security.auth.login.LoginContext.login(LoginContext.java:587)
58      at org.apache.hadoop.security.UserGroupInformation.loginUserFromSubject(UserGroupInformation.java:799)
59      ... 10 more
Run Code Online (Sandbox Code Playgroud)

我尝试在spark-default.conf上设置以下属性仍然没有用。

spark.eventLog.enabled             false
spark.ui.enabled                   false
spark.acls.enable                  false
spark.admin.acls                   *
spark.modify.acls                  *
spark.modify.acls.groups           *
spark.ui.view.acls.groups          *
spark.ui.enabled                   false
Run Code Online (Sandbox Code Playgroud)

您能帮我解决这个问题吗?

谢谢

纳文

eje*_*eje 5

这是不需要的替代方法nss_wrapper

默认情况下,OpenShift容器使用匿名用户ID和组ID 0(也称为“根”组)运行。首先,将您的映像设置/etc/passwd为group-id拥有0,并具有组写访问权限,例如以下Dockerfile片段:

RUN chgrp root /etc/passwd && chmod ug+rw /etc/passwd
Run Code Online (Sandbox Code Playgroud)

然后,您可以在容器启动时添加以下逻辑,例如,以下脚本可以用作ENTRYPOINT

#!/bin/bash

myuid=$(id -u)
mygid=$(id -g)
uidentry=$(getent passwd $myuid)

if [ -z "$uidentry" ] ; then
    # assumes /etc/passwd has root-group (gid 0) ownership
    echo "$myuid:x:$myuid:$mygid:anonymous uid:/tmp:/bin/false" >> /etc/passwd
fi

exec "$@"
Run Code Online (Sandbox Code Playgroud)

该入口点脚本将自动为匿名uid提供一个passwd文件条目,因此需要它的工具不会失败。

关于OpenShift中匿名uid的相关主题以及相关主题,有一篇不错的博客文章:https ://blog.openshift.com/jupyter-on-openshift-part-6-running-as-an-assigned-user-id/


eje*_*eje 3

(我保留这个答案是因为了解它很有用nss_wrapper,但是另一个答案无需安装或使用 nss_wrapper 即可使用)

Spark 希望能够在 passwd 中查找其 UID。这个集成问题可以使用 nss_wrapper 来解决;可以在此处找到在图像入口点使用此解决方案的一个很好的示例:

https://github.com/radanalyticsio/openshift-spark/blob/master/scripts/spark/added/entrypoint

# spark likes to be able to lookup a username for the running UID, if
# no name is present fake it.
cat /etc/passwd > /tmp/passwd
echo "$(id -u):x:$(id -u):$(id -g):dynamic uid:$SPARK_HOME:/bin/false" >> /tmp/passwd

export NSS_WRAPPER_PASSWD=/tmp/passwd
# NSS_WRAPPER_GROUP must be set for NSS_WRAPPER_PASSWD to be used
export NSS_WRAPPER_GROUP=/etc/group

export LD_PRELOAD=libnss_wrapper.so

exec "$@"
Run Code Online (Sandbox Code Playgroud)

如果您对可在 Openshift 上使用的预制 Spark 映像感兴趣,我建议从这里开始:

https://github.com/radanalyticsio/openshift-spark

这些图像是作为 Radanalytics.io 社区项目工具的一部分生成的,该项目已经生成了许多用于在 Openshift 中轻松创建 Spark 集群的工具。您可以在这里了解有关该项目的更多信息:

https://radanalytics.io/get-started