Gri*_*mer 1 scala user-defined-functions apache-spark
我有一个如下所示的数据框
| id| age| rbc| bgr| dm|cad|appet| pe|ane|classification|
+---+----+------+-----+---+---+-----+---+---+--------------+
| 3|48.0|normal|117.0| no| no| poor|yes|yes| ckd|
....
....
....
Run Code Online (Sandbox Code Playgroud)
我编写了一个UDF来将分类转换yes, no, poor, normal为二进制0s和1s
def stringToBinary(stringValue: String): Int = {
stringValue match {
case "yes" => return 1
case "no" => return 0
case "present" => return 1
case "notpresent" => return 0
case "normal" => return 1
case "abnormal" => return 0
}
}
val stringToBinaryUDF = udf(stringToBinary _)
Run Code Online (Sandbox Code Playgroud)
我将此应用于数据帧,如下所示
val newCol = stringToBinaryUDF.apply(col("pc")) //creates the new column with formatted value
val refined1 = noZeroDF.withColumn("dm", newCol) //adds the new column to original
Run Code Online (Sandbox Code Playgroud)
如何将多个列传递到UDF中,以便我不必为其他分类列重复自己?
Ram*_*jan 10
udf如果您具有spark执行相同工作的函数,则函数不应该是udf函数将序列化和反序列化列数据.
给出一个dataframeas
+---+----+------+-----+---+---+-----+---+---+--------------+
|id |age |rbc |bgr |dm |cad|appet|pe |ane|classification|
+---+----+------+-----+---+---+-----+---+---+--------------+
|3 |48.0|normal|117.0|no |no |poor |yes|yes|ckd |
+---+----+------+-----+---+---+-----+---+---+--------------+
Run Code Online (Sandbox Code Playgroud)
您可以通过when功能实现您的要求
import org.apache.spark.sql.functions._
def applyFunction(column : Column) = when(column === "yes" || column === "present" || column === "normal", lit(1))
.otherwise(when(column === "no" || column === "notpresent" || column === "abnormal", lit(0)).otherwise(column))
df.withColumn("dm", applyFunction(col("dm")))
.withColumn("cad", applyFunction(col("cad")))
.withColumn("rbc", applyFunction(col("rbc")))
.withColumn("pe", applyFunction(col("pe")))
.withColumn("ane", applyFunction(col("ane")))
.show(false)
Run Code Online (Sandbox Code Playgroud)
结果是
+---+----+---+-----+---+---+-----+---+---+--------------+
|id |age |rbc|bgr |dm |cad|appet|pe |ane|classification|
+---+----+---+-----+---+---+-----+---+---+--------------+
|3 |48.0|1 |117.0|0 |0 |poor |1 |1 |ckd |
+---+----+---+-----+---+---+-----+---+---+--------------+
Run Code Online (Sandbox Code Playgroud)
现在问题清楚地表明,您不希望为所有列重复该过程,您可以执行以下操作
val columnsTomap = df.select("rbc", "cad", "rbc", "pe", "ane").columns
var tempdf = df
columnsTomap.map(column => {
tempdf = tempdf.withColumn(column, applyFunction(col(column)))
})
tempdf.show(false)
Run Code Online (Sandbox Code Playgroud)