如何以干净,高效的方式在pytorch中获得迷你批次?

Cha*_*ker 32 python numpy machine-learning deep-learning pytorch

我试图做一个简单的事情,用火炬训练带有随机梯度下降(SGD)的线性模型:

import numpy as np

import torch
from torch.autograd import Variable

import pdb

def get_batch2(X,Y,M,dtype):
    X,Y = X.data.numpy(), Y.data.numpy()
    N = len(Y)
    valid_indices = np.array( range(N) )
    batch_indices = np.random.choice(valid_indices,size=M,replace=False)
    batch_xs = torch.FloatTensor(X[batch_indices,:]).type(dtype)
    batch_ys = torch.FloatTensor(Y[batch_indices]).type(dtype)
    return Variable(batch_xs, requires_grad=False), Variable(batch_ys, requires_grad=False)

def poly_kernel_matrix( x,D ):
    N = len(x)
    Kern = np.zeros( (N,D+1) )
    for n in range(N):
        for d in range(D+1):
            Kern[n,d] = x[n]**d;
    return Kern

## data params
N=5 # data set size
Degree=4 # number dimensions/features
D_sgd = Degree+1
##
x_true = np.linspace(0,1,N) # the real data points
y = np.sin(2*np.pi*x_true)
y.shape = (N,1)
## TORCH
dtype = torch.FloatTensor
# dtype = torch.cuda.FloatTensor # Uncomment this to run on GPU
X_mdl = poly_kernel_matrix( x_true,Degree )
X_mdl = Variable(torch.FloatTensor(X_mdl).type(dtype), requires_grad=False)
y = Variable(torch.FloatTensor(y).type(dtype), requires_grad=False)
## SGD mdl
w_init = torch.zeros(D_sgd,1).type(dtype)
W = Variable(w_init, requires_grad=True)
M = 5 # mini-batch size
eta = 0.1 # step size
for i in range(500):
    batch_xs, batch_ys = get_batch2(X_mdl,y,M,dtype)
    # Forward pass: compute predicted y using operations on Variables
    y_pred = batch_xs.mm(W)
    # Compute and print loss using operations on Variables. Now loss is a Variable of shape (1,) and loss.data is a Tensor of shape (1,); loss.data[0] is a scalar value holding the loss.
    loss = (1/N)*(y_pred - batch_ys).pow(2).sum()
    # Use autograd to compute the backward pass. Now w will have gradients
    loss.backward()
    # Update weights using gradient descent; w1.data are Tensors,
    # w.grad are Variables and w.grad.data are Tensors.
    W.data -= eta * W.grad.data
    # Manually zero the gradients after updating weights
    W.grad.data.zero_()

#
c_sgd = W.data.numpy()
X_mdl = X_mdl.data.numpy()
y = y.data.numpy()
#
Xc_pinv = np.dot(X_mdl,c_sgd)
print('J(c_sgd) = ', (1/N)*(np.linalg.norm(y-Xc_pinv)**2) )
print('loss = ',loss.data[0])
Run Code Online (Sandbox Code Playgroud)

代码运行正常,虽然我的get_batch2方法看起来真的很简单/天真,但可能是因为我是pytorch的新手,但我还没有找到一个讨论如何检索数据批次的好地方.我通过他们的教程(http://pytorch.org/tutorials/beginner/pytorch_with_examples.html)和数据集(http://pytorch.org/tutorials/beginner/data_loading_tutorial.html)没有运气.这些教程似乎都假设一个人已经在开始时已经拥有批量和批量大小,然后继续使用该数据进行训练而不进行更改(具体请参阅http://pytorch.org/tutorials/beginner/pytorch_with_examples.html# pytorch-variables-and-autograd).

所以我的问题是我是否真的需要将我的数据变回numpy以便我可以获取它的一些随机样本然后将其变回pytorch with Variable以便能够在内存中训练?火炬有没有办法获得迷你批次?

我看了几个功能火炬提供但没有运气:

#pdb.set_trace()
#valid_indices = torch.arange(0,N).numpy()
#valid_indices = np.array( range(N) )
#batch_indices = np.random.choice(valid_indices,size=M,replace=False)
#indices = torch.LongTensor(batch_indices)
#batch_xs, batch_ys = torch.index_select(X_mdl, 0, indices), torch.index_select(y, 0, indices)
#batch_xs,batch_ys = torch.index_select(X_mdl, 0, indices), torch.index_select(y, 0, indices)
Run Code Online (Sandbox Code Playgroud)

即使我提供的代码工作正常,我担心它不是一个有效的实现,如果我使用GPU会有相当大的进一步减速(因为我猜它把东西放在内存中然后把它们拿回来放他们这样的GPU很傻).


我根据建议使用的答案实现了一个新的torch.index_select():

def get_batch2(X,Y,M):
    '''
    get batch for pytorch model
    '''
    # TODO fix and make it nicer, there is pytorch forum question
    #X,Y = X.data.numpy(), Y.data.numpy()
    X,Y = X, Y
    N = X.size()[0]
    batch_indices = torch.LongTensor( np.random.randint(0,N+1,size=M) )
    pdb.set_trace()
    batch_xs = torch.index_select(X,0,batch_indices)
    batch_ys = torch.index_select(Y,0,batch_indices)
    return Variable(batch_xs, requires_grad=False), Variable(batch_ys, requires_grad=False)
Run Code Online (Sandbox Code Playgroud)

然而,这似乎有问题,因为它不起作用,如果X,Y不是变量...这真的很奇怪.我将此添加到pytorch论坛:https://discuss.pytorch.org/t/how-to-get-mini-batches-in-pytorch-in-a-clean-and-efficient-way/10322

现在我正在努力的是让这个工作为gpu.我最新的版本:

def get_batch2(X,Y,M,dtype):
    '''
    get batch for pytorch model
    '''
    # TODO fix and make it nicer, there is pytorch forum question
    #X,Y = X.data.numpy(), Y.data.numpy()
    X,Y = X, Y
    N = X.size()[0]
    if dtype ==  torch.cuda.FloatTensor:
        batch_indices = torch.cuda.LongTensor( np.random.randint(0,N,size=M) )# without replacement
    else:
        batch_indices = torch.LongTensor( np.random.randint(0,N,size=M) ).type(dtype)  # without replacement
    pdb.set_trace()
    batch_xs = torch.index_select(X,0,batch_indices)
    batch_ys = torch.index_select(Y,0,batch_indices)
    return Variable(batch_xs, requires_grad=False), Variable(batch_ys, requires_grad=False)
Run Code Online (Sandbox Code Playgroud)

错误:

RuntimeError: tried to construct a tensor from a int sequence, but found an item of type numpy.int64 at index (0)
Run Code Online (Sandbox Code Playgroud)

我不明白,我真的要这样做:

ints = [ random.randint(0,N) for i i range(M)]
Run Code Online (Sandbox Code Playgroud)

得到整数?

如果数据可以是变量,那也是理想的.它似乎torch.index_select不适用于Variable类型数据.

这个整数列表仍然不起作用:

TypeError: torch.addmm received an invalid combination of arguments - got (int, torch.cuda.FloatTensor, int, torch.cuda.FloatTensor, torch.FloatTensor, out=torch.cuda.FloatTensor), but expected one of:
 * (torch.cuda.FloatTensor source, torch.cuda.FloatTensor mat1, torch.cuda.FloatTensor mat2, *, torch.cuda.FloatTensor out)
 * (torch.cuda.FloatTensor source, torch.cuda.sparse.FloatTensor mat1, torch.cuda.FloatTensor mat2, *, torch.cuda.FloatTensor out)
 * (float beta, torch.cuda.FloatTensor source, torch.cuda.FloatTensor mat1, torch.cuda.FloatTensor mat2, *, torch.cuda.FloatTensor out)
 * (torch.cuda.FloatTensor source, float alpha, torch.cuda.FloatTensor mat1, torch.cuda.FloatTensor mat2, *, torch.cuda.FloatTensor out)
 * (float beta, torch.cuda.FloatTensor source, torch.cuda.sparse.FloatTensor mat1, torch.cuda.FloatTensor mat2, *, torch.cuda.FloatTensor out)
 * (torch.cuda.FloatTensor source, float alpha, torch.cuda.sparse.FloatTensor mat1, torch.cuda.FloatTensor mat2, *, torch.cuda.FloatTensor out)
 * (float beta, torch.cuda.FloatTensor source, float alpha, torch.cuda.FloatTensor mat1, torch.cuda.FloatTensor mat2, *, torch.cuda.FloatTensor out)
      didn't match because some of the arguments have invalid types: (int, torch.cuda.FloatTensor, int, torch.cuda.FloatTensor, torch.FloatTensor, out=torch.cuda.FloatTensor)
 * (float beta, torch.cuda.FloatTensor source, float alpha, torch.cuda.sparse.FloatTensor mat1, torch.cuda.FloatTensor mat2, *, torch.cuda.FloatTensor out)
      didn't match because some of the arguments have invalid types: (int, torch.cuda.FloatTensor, int, torch.cuda.FloatTensor, torch.FloatTensor, out=torch.cuda.FloatTensor)
Run Code Online (Sandbox Code Playgroud)

Mo *_*sny 28

使用数据加载器.

数据集

首先定义数据集.您可以在数据集中torchvision.datasets使用ImageFolder数据集或使用遵循Imagenet结构的数据集类.

trainset=torchvision.datasets.ImageFolder(root='/path/to/your/data/trn', transform=generic_transform)
testset=torchvision.datasets.ImageFolder(root='/path/to/your/data/val', transform=generic_transform)
Run Code Online (Sandbox Code Playgroud)

变换

转换对于动态预处理加载的数据非常有用.如果您使用的是图像,则必须使用ToTensor()变换将加载的图像转换PILtorch.tensor.可以将更多变换打包到合成变换中,如下所示.

generic_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.ToPILImage(),
    #transforms.CenterCrop(size=128),
    transforms.Lambda(lambda x: myimresize(x, (128, 128))),
    transforms.ToTensor(),
    transforms.Normalize((0., 0., 0.), (6, 6, 6))
])
Run Code Online (Sandbox Code Playgroud)

数据加载器

然后定义一个数据加载器,在训练时准备下一批.您可以设置数据加载的线程数.

trainloader=torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True, num_workers=8)
testloader=torch.utils.data.DataLoader(testset, batch_size=32, shuffle=False, num_workers=8)
Run Code Online (Sandbox Code Playgroud)

对于培训,您只需枚举数据加载器.

  for i, data in enumerate(trainloader, 0):
    inputs, labels = data    
    inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda())
    # continue training...
Run Code Online (Sandbox Code Playgroud)

NumPy Stuff

是.您必须转换torch.tensornumpy使用.numpy()方法来处理它.如果您正在使用CUDA,则必须先使用该.cpu()方法将数据从GPU下载到CPU,然后再进行调用.numpy().就个人而言,来自MATLAB背景,我更喜欢用火炬张量进行大部分工作,然后将数据转换为numpy仅用于可视化.另外请记住,火炬以通道优先模式存储数据,而numpy和PIL使用channel-last.这意味着您需要使用np.rollaxis将通道轴移动到最后一个.示例代码如下.

np.rollaxis(make_grid(mynet.ftrextractor(inputs).data, nrow=8, padding=1).cpu().numpy(), 0, 3)
Run Code Online (Sandbox Code Playgroud)

记录

我发现可视化特征图的最佳方法是使用张量板.yunjey/pytorch-tutorial提供了一个代码.


sae*_*h_g 28

如果我正确理解您的代码,您的get_batch2函数似乎是从数据集中随机进行小批量处理,而不会跟踪您在一个时代中使用过的指数.此实现的问题是它可能不会使用您的所有数据.

我通常进行批处理的方式是使用批量创建所有可能顶点的随机排列,torch.randperm(N)并循环遍历它们.例如:

n_epochs = 100 # or whatever
batch_size = 128 # or whatever

for epoch in range(n_epochs):

    # X is a torch Variable
    permutation = torch.randperm(X.size()[0])

    for i in range(0,X.size()[0], batch_size):
        optimizer.zero_grad()

        indices = permutation[i:i+batch_size]
        batch_x, batch_y = X[indices], Y[indices]

        # in case you wanted a semi-full example
        outputs = model.forward(batch_x)
        loss = lossfunction(outputs,batch_y)

        loss.backward()
        optimizer.step()
Run Code Online (Sandbox Code Playgroud)

如果您想复制和粘贴,请确保在纪元循环开始之前的某处定义优化器,模型和损失函数.

关于您的错误,请尝试使用torch.from_numpy(np.random.randint(0,N,size=M)).long()而不是torch.LongTensor(np.random.randint(0,N,size=M)).我不确定这是否能解决您所获得的错误,但它将解决未来的错误.

  • 是的,重要的部分是确保数据在一个纪元中不会重复,并且所有数据都在每个纪元中使用。否则,模型可能会过度拟合某些特定数据,并且在泛化到未见过的测试数据方面可能会更差。跟踪指数只是实现这一目标的一个简单方法。另一种方法是在每个时期开始时对数据进行洗牌。不管怎样有效。看起来您的示例代码可能会重用一些数据并忽略一个时期内的其他数据。抱歉,如果我误解了您的代码。 (2认同)

For*_*tti 5

不确定你想要做什么.Wrt批处理你不必转换为numpy.你可以使用index_select(),例如:

for epoch in range(500):
    k=0
    loss = 0
    while k < X_mdl.size(0):

        random_batch = [0]*5
        for i in range(k,k+M):
            random_batch[i] = np.random.choice(N-1)
        random_batch = torch.LongTensor(random_batch)
        batch_xs = X_mdl.index_select(0, random_batch)
        batch_ys = y.index_select(0, random_batch)

        # Forward pass: compute predicted y using operations on Variables
        y_pred = batch_xs.mul(W)
        # etc..
Run Code Online (Sandbox Code Playgroud)

其余的代码也必须改变.


我的猜测,你想创建一个连接你的X张量和Y张量的get_batch函数.就像是:

def make_batch(list_of_tensors):
    X, y = list_of_tensors[0]
    # may need to unsqueeze X and y to get right dimensions
    for i, (sample, label) in enumerate(list_of_tensors[1:]):
        X = torch.cat((X, sample), dim=0)
        y = torch.cat((y, label), dim=0)
    return X, y
Run Code Online (Sandbox Code Playgroud)

然后在训练期间,通过切片选择例如max_batch_size = 32的示例.

for epoch:
  X, y = make_batch(list_of_tensors)
  X = Variable(X, requires_grad=False)
  y = Variable(y, requires_grad=False)

  k = 0   
   while k < X.size(0):
     inputs = X[k:k+max_batch_size,:]
     labels = y[k:k+max_batch_size,:]
     # some computation
     k+= max_batch_size
Run Code Online (Sandbox Code Playgroud)


Jib*_*hew 5

您可以使用 torch.utils.data

假设您已经从目录中加载了数据,在训练和测试 numpy 数组中,您可以从torch.utils.data.Dataset类继承以创建您的数据集对象

class MyDataset(Dataset):
    def __init__(self, x, y):
        super(MyDataset, self).__init__()
        assert x.shape[0] == y.shape[0] # assuming shape[0] = dataset size
        self.x = x
        self.y = y


    def __len__(self):
        return self.y.shape[0]

    def __getitem__(self, index):
        return self.x[index], self.y[index]
Run Code Online (Sandbox Code Playgroud)

然后,创建您的数据集对象

traindata = MyDataset(train_x, train_y)
Run Code Online (Sandbox Code Playgroud)

最后,用于DataLoader创建您的小批量

trainloader = torch.utils.data.DataLoader(traindata, batch_size=64, shuffle=True)
Run Code Online (Sandbox Code Playgroud)