use*_*174 3 apache-kafka apache-spark pyspark spark-structured-streaming
因此,我在Kafka主题中流了一些数据,我正在获取这些流数据并将其放入DataFrame。我想在DataFrame中显示数据:
import os
from kafka import KafkaProducer
from pyspark.sql import SparkSession, DataFrame
import time
from datetime import datetime, timedelta
os.environ['PYSPARK_SUBMIT_ARGS'] = '--packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.2.0,org.apache.spark:spark-streaming-kafka-0-8_2.11:2.2.0 pyspark-shell'
topic_name = "my-topic"
kafka_broker = "localhost:9092"
producer = KafkaProducer(bootstrap_servers = kafka_broker)
spark = SparkSession.builder.getOrCreate()
terminate = datetime.now() + timedelta(seconds=30)
while datetime.now() < terminate:
producer.send(topic = topic_name, value = str(datetime.now()).encode('utf-8'))
time.sleep(1)
readDF = spark \
.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", kafka_broker) \
.option("subscribe", topic_name) \
.load()
readDF = readDF.selectExpr("CAST(key AS STRING)","CAST(value AS STRING)")
readDF.writeStream.format("console").start()
readDF.show()
producer.close()
Run Code Online (Sandbox Code Playgroud)
但是我继续收到此错误:
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/spark/spark/python/pyspark/sql/utils.py", line 63, in deco
return f(*a, **kw)
File "/home/spark/spark/python/lib/py4j-0.10.4-src.zip/py4j/protocol.py", line 319, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o30.showString.
: org.apache.spark.sql.AnalysisException: Queries with streaming sources must be executed with writeStream.start();;
kafka
at org.apache.spark.sql.catalyst.analysis.UnsupportedOperationChecker$.org$apache$spark$sql$catalyst$analysis$UnsupportedOperationChecker$$throwError(UnsupportedOperationChecker.scala:297)
at org.apache.spark.sql.catalyst.analysis.UnsupportedOperationChecker$$anonfun$checkForBatch$1.apply(UnsupportedOperationChecker.scala:36)
at org.apache.spark.sql.catalyst.analysis.UnsupportedOperationChecker$$anonfun$checkForBatch$1.apply(UnsupportedOperationChecker.scala:34)
at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:127)
...
Traceback (most recent call last):
File "test2.py", line 30, in <module>
readDF.show()
File "/home/spark/spark/python/pyspark/sql/dataframe.py", line 336, in show
print(self._jdf.showString(n, 20))
File "/home/spark/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py", line 1133, in __call__
File "/home/spark/spark/python/pyspark/sql/utils.py", line 69, in deco
raise AnalysisException(s.split(': ', 1)[1], stackTrace)
pyspark.sql.utils.AnalysisException: 'Queries with streaming sources must be executed with writeStream.start();;\nkafka'
Run Code Online (Sandbox Code Playgroud)
我不明白为什么会发生异常,我是writeStream.start()在之前打电话给我的show()。我试图摆脱,selectExpr()但这没什么区别。有人知道如何显示流来源的DataFrame吗?我正在使用Python 3.6.1,Kafka 0.10.2.1和Spark 2.2.0
流式DataFrame不支持该show()方法。当您调用start()method时,它将启动一个后台线程以将输入数据流式传输到接收器,并且由于您使用的是ConsoleSink,因此它将数据输出到控制台。您无需致电show()。
之后删除readDF.show()并添加睡眠,那么您应该能够在控制台中查看数据,例如
query = readDF.writeStream.format("console").start()
import time
time.sleep(10) # sleep 10 seconds
query.stop()
Run Code Online (Sandbox Code Playgroud)
您还需要将设置startingOffsets为earliest,否则,Kafka源将仅从最新的偏移量开始,并且在您的情况下不获取任何内容。
readDF = spark \
.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", kafka_broker) \
.option("startingOffsets", "earliest") \
.option("subscribe", topic_name) \
.load()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
4082 次 |
| 最近记录: |