Dan*_*ner 18 haskell integer-arithmetic
在ghci中,使用arithmoi包:
Math.NumberTheory.Powers.General> :set +s
Math.NumberTheory.Powers.General> integerRoot 786 ((10^32)^786)
100000000000000000000000000000000
(0.04 secs, 227,064 bytes)
Math.NumberTheory.Powers.General> integerRoot 787 ((10^32)^787)
Run Code Online (Sandbox Code Playgroud)
五分钟后,它仍然没有回应.为什么需要这么长时间?
(从一些临时测试来看,对于大于787的所有选择来说似乎都很慢,并且对于所有选择较小的选择都很快.)
Ry-*_*Ry- 23
arithmoi 工具integerRoot
通过获取初始近似根与牛顿法完善其猜测.对于(10 32)786,第二个近似得到一个非常好的起点:
> appKthRoot 786 ((10^32)^786)
100000000000000005366162204393472
Run Code Online (Sandbox Code Playgroud)
对于(10 32)787,第二个近似得到一个非常糟糕的起点.就像,非常糟糕.
> appKthRoot 787 ((10^32)^787)
1797693134862315907729305190789024733617976978942306572734300811577326758055009
6313270847732240753602112011387987139335765878976881441662249284743063947412437
7767893424865485276302219601246094119453082952085005768838150682342462881473913
110540827237163350510684586298239947245938479716304835356329624224137216
Run Code Online (Sandbox Code Playgroud)
它实际上得到了从那里开始的一切的近似值.
> length $ nub [appKthRoot x ((10^32)^x) | x <- [787..1000]]
1
Run Code Online (Sandbox Code Playgroud)
无论如何,放入重要部分appKthRoot
,我们得到:
> let h = 106; k = 786; n = (10^32)^k; !(I# s) = h * k - k in floor (scaleFloat (h - 1) (fromInteger (n `shiftRInteger` s) ** (1/fromIntegral k) :: Double))
100000000000000005366162204393472
> let h = 106; k = 787; n = (10^32)^k; !(I# s) = h * k - k in floor (scaleFloat (h - 1) (fromInteger (n `shiftRInteger` s) ** (1/fromIntegral k) :: Double))
179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137216
Run Code Online (Sandbox Code Playgroud)
并看看会发生什么scaleFloat
:
> let h = 106; k = 786; n = (10^32)^k; !(I# s) = h * k - k in fromInteger (n `shiftRInteger` s) ** (1/fromIntegral k) :: Double
2.465190328815662
> let h = 106; k = 787; n = (10^32)^k; !(I# s) = h * k - k in fromInteger (n `shiftRInteger` s) ** (1/fromIntegral k) :: Double
Infinity
Run Code Online (Sandbox Code Playgroud)
是的,那就是它.(10 32)786 ÷2 82530 ≈2 1023.1配合在双,但(10 32)787 ÷2 82635 ≈2 1024.4没有.
归档时间: |
|
查看次数: |
527 次 |
最近记录: |