Ahm*_*med 5 python duplicates conditional-statements dataframe pandas
我有这样的数据帧:
Date PlumeO Distance
2014-08-13 13:48:00 754.447905 5.844577
2014-08-13 13:48:00 754.447905 6.888653
2014-08-13 13:48:00 754.447905 6.938860
2014-08-13 13:48:00 754.447905 6.977284
2014-08-13 13:48:00 754.447905 6.946430
2014-08-13 13:48:00 754.447905 6.345506
2014-08-13 13:48:00 754.447905 6.133567
2014-08-13 13:48:00 754.447905 5.846046
2014-08-13 16:59:00 754.447905 6.345506
2014-08-13 16:59:00 754.447905 6.694847
2014-08-13 16:59:00 754.447905 5.846046
2014-08-13 16:59:00 754.447905 6.977284
2014-08-13 16:59:00 754.447905 6.938860
2014-08-13 16:59:00 754.447905 5.844577
2014-08-13 16:59:00 754.447905 6.888653
2014-08-13 16:59:00 754.447905 6.133567
2014-08-13 16:59:00 754.447905 6.946430
Run Code Online (Sandbox Code Playgroud)
我试图保持最小距离的日期,所以删除重复日期并保持最小距离.
有没有办法在熊猫中实现这一点,df.drop_duplicates还是我坚持使用if语句找到最小的距离?
ayh*_*han 10
按距离排序并按日期排序:
df.sort_values('Distance').drop_duplicates(subset='Date', keep='first')
Out:
Date PlumeO Distance
0 2014-08-13 13:48:00 754.447905 5.844577
13 2014-08-13 16:59:00 754.447905 5.844577
Run Code Online (Sandbox Code Playgroud)
这些方法的优点是不需要排序。
选项 1
您可以使用 标识最小值的索引值,idxmin并且可以在groupby. 使用这些结果来切片您的数据框。
df.loc[df.groupby('Date').Distance.idxmin()]
Date PlumeO Distance
0 2014-08-13 13:48:00 754.447905 5.844577
13 2014-08-13 16:59:00 754.447905 5.844577
Run Code Online (Sandbox Code Playgroud)
选项 2
您可以使用pd.DataFrame.nsmallest返回与最小距离关联的行。
df.groupby('Date', group_keys=False).apply(
pd.DataFrame.nsmallest, n=1, columns='Distance'
)
Date PlumeO Distance
0 2014-08-13 13:48:00 754.447905 5.844577
13 2014-08-13 16:59:00 754.447905 5.844577
Run Code Online (Sandbox Code Playgroud)