use*_*679 7 python machine-learning conv-neural-network keras
我的虚拟数据集中有12个长度为200的向量,每个向量代表一个样本。假设x_train是一个带有shape的数组(12, 200)。
当我做:
model = Sequential()
model.add(Conv1D(2, 4, input_shape=(1, 200)))
Run Code Online (Sandbox Code Playgroud)
我得到错误:
ValueError: Error when checking model input: expected conv1d_1_input to have 3 dimensions, but got array with shape (12, 200)
Run Code Online (Sandbox Code Playgroud)
如何正确调整输入数组的形状?
这是我更新的脚本:
data = np.loadtxt('temp/data.csv', delimiter=' ')
trainData = []
testData = []
trainlabels = []
testlabels = []
with open('temp/trainlabels', 'r') as f:
trainLabelFile = list(csv.reader(f))
with open('temp/testlabels', 'r') as f:
testLabelFile = list(csv.reader(f))
for i in range(2):
for idx in trainLabelFile[i]:
trainData.append(data[int(idx)])
# append 0 to labels for neg, 1 for pos
trainlabels.append(i)
for i in range(2):
for idx in testLabelFile[i]:
testData.append(data[int(idx)])
# append 0 to labels for neg, 1 for pos
testlabels.append(i)
# print(trainData.shape)
X = np.array(trainData)
Y = np.array(trainlabels)
X2 = np.array(testData)
Y2 = np.array(testlabels)
model = Sequential()
model.add(Conv1D(1, 1, input_shape=(12, 1, 200)))
opt = 'adam'
model.compile(loss='mean_squared_error', optimizer=opt, metrics=['accuracy'])
model.fit(X, Y, epochs=epochs)
Run Code Online (Sandbox Code Playgroud)
我现在收到一个新错误:
ValueError: Input 0 is incompatible with layer conv1d_1: expected ndim=3, found ndim=4
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2793 次 |
| 最近记录: |