bro*_*oli 18 python dataframe pandas
我的数据框如下所示
x = pd.DataFrame({'user': ['a','a','b','b'], 'dt': ['2016-01-01','2016-01-02', '2016-01-05','2016-01-06'], 'val': [1,33,2,1]})
Run Code Online (Sandbox Code Playgroud)
我希望能够做的就是找到日期列内的最小和最大的日期,并扩大该列有所有的日期出现,同时填补0了val列.所以期望的输出是
dt user val
0 2016-01-01 a 1
1 2016-01-02 a 33
2 2016-01-03 a 0
3 2016-01-04 a 0
4 2016-01-05 a 0
5 2016-01-06 a 0
6 2016-01-01 b 0
7 2016-01-02 b 0
8 2016-01-03 b 0
9 2016-01-04 b 0
10 2016-01-05 b 2
11 2016-01-06 b 1
Run Code Online (Sandbox Code Playgroud)
ayh*_*han 24
初始数据帧:
dt user val
0 2016-01-01 a 1
1 2016-01-02 a 33
2 2016-01-05 b 2
3 2016-01-06 b 1
Run Code Online (Sandbox Code Playgroud)
首先,将日期转换为datetime:
x['dt'] = pd.to_datetime(x['dt'])
Run Code Online (Sandbox Code Playgroud)
然后,生成日期和唯一用户:
dates = x.set_index('dt').resample('D').asfreq().index
>> DatetimeIndex(['2016-01-01', '2016-01-02', '2016-01-03', '2016-01-04',
'2016-01-05', '2016-01-06'],
dtype='datetime64[ns]', name='dt', freq='D')
users = x['user'].unique()
>> array(['a', 'b'], dtype=object)
Run Code Online (Sandbox Code Playgroud)
这将允许您创建MultiIndex:
idx = pd.MultiIndex.from_product((dates, users), names=['dt', 'user'])
>> MultiIndex(levels=[[2016-01-01 00:00:00, 2016-01-02 00:00:00, 2016-01-03 00:00:00, 2016-01-04 00:00:00, 2016-01-05 00:00:00, 2016-01-06 00:00:00], ['a', 'b']],
labels=[[0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]],
names=['dt', 'user'])
Run Code Online (Sandbox Code Playgroud)
您可以使用它来重新索引DataFrame:
x.set_index(['dt', 'user']).reindex(idx, fill_value=0).reset_index()
Out:
dt user val
0 2016-01-01 a 1
1 2016-01-01 b 0
2 2016-01-02 a 33
3 2016-01-02 b 0
4 2016-01-03 a 0
5 2016-01-03 b 0
6 2016-01-04 a 0
7 2016-01-04 b 0
8 2016-01-05 a 0
9 2016-01-05 b 2
10 2016-01-06 a 0
11 2016-01-06 b 1
Run Code Online (Sandbox Code Playgroud)
然后可以按用户排序:
x.set_index(['dt', 'user']).reindex(idx, fill_value=0).reset_index().sort_values(by='user')
Out:
dt user val
0 2016-01-01 a 1
2 2016-01-02 a 33
4 2016-01-03 a 0
6 2016-01-04 a 0
8 2016-01-05 a 0
10 2016-01-06 a 0
1 2016-01-01 b 0
3 2016-01-02 b 0
5 2016-01-03 b 0
7 2016-01-04 b 0
9 2016-01-05 b 2
11 2016-01-06 b 1
Run Code Online (Sandbox Code Playgroud)
正如@ayhan所说
x.dt = pd.to_datetime(x.dt)
Run Code Online (Sandbox Code Playgroud)
单行使用@ ayhan的想法,同时合并stack/ unstack和fill_value
x.set_index(
['dt', 'user']
).unstack(
fill_value=0
).asfreq(
'D', fill_value=0
).stack().sort_index(level=1).reset_index()
dt user val
0 2016-01-01 a 1
1 2016-01-02 a 33
2 2016-01-03 a 0
3 2016-01-04 a 0
4 2016-01-05 a 0
5 2016-01-06 a 0
6 2016-01-01 b 0
7 2016-01-02 b 0
8 2016-01-03 b 0
9 2016-01-04 b 0
10 2016-01-05 b 2
11 2016-01-06 b 1
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
8965 次 |
| 最近记录: |