Siv*_*man 2 apache-spark apache-spark-sql pyspark
当我开始学习PySpark时,我使用了一个列表来创建一个dataframe
.现在推断列表中的模式已被弃用,我收到了警告,它建议我使用pyspark.sql.Row
.但是,当我尝试创建一个使用时Row
,我会推断出架构问题.这是我的代码:
>>> row = Row(name='Severin', age=33)
>>> df = spark.createDataFrame(row)
Run Code Online (Sandbox Code Playgroud)
这会导致以下错误:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/spark2-client/python/pyspark/sql/session.py", line 526, in createDataFrame
rdd, schema = self._createFromLocal(map(prepare, data), schema)
File "/spark2-client/python/pyspark/sql/session.py", line 390, in _createFromLocal
struct = self._inferSchemaFromList(data)
File "/spark2-client/python/pyspark/sql/session.py", line 322, in _inferSchemaFromList
schema = reduce(_merge_type, map(_infer_schema, data))
File "/spark2-client/python/pyspark/sql/types.py", line 992, in _infer_schema
raise TypeError("Can not infer schema for type: %s" % type(row))
TypeError: Can not infer schema for type: <type 'int'>
Run Code Online (Sandbox Code Playgroud)
所以我创建了一个架构
>>> schema = StructType([StructField('name', StringType()),
... StructField('age',IntegerType())])
>>> df = spark.createDataFrame(row, schema)
Run Code Online (Sandbox Code Playgroud)
但是,这个错误会被抛出.
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/spark2-client/python/pyspark/sql/session.py", line 526, in createDataFrame
rdd, schema = self._createFromLocal(map(prepare, data), schema)
File "/spark2-client/python/pyspark/sql/session.py", line 387, in _createFromLocal
data = list(data)
File "/spark2-client/python/pyspark/sql/session.py", line 509, in prepare
verify_func(obj, schema)
File "/spark2-client/python/pyspark/sql/types.py", line 1366, in _verify_type
raise TypeError("StructType can not accept object %r in type %s" % (obj, type(obj)))
TypeError: StructType can not accept object 33 in type <type 'int'>
Run Code Online (Sandbox Code Playgroud)
该createDataFrame
函数采用行列表(以及其他选项)加上模式,因此正确的代码将类似于:
from pyspark.sql.types import *
from pyspark.sql import Row
schema = StructType([StructField('name', StringType()), StructField('age',IntegerType())])
rows = [Row(name='Severin', age=33), Row(name='John', age=48)]
df = spark.createDataFrame(rows, schema)
df.printSchema()
df.show()
Run Code Online (Sandbox Code Playgroud)
日期:
root
|-- name: string (nullable = true)
|-- age: integer (nullable = true)
+-------+---+
| name|age|
+-------+---+
|Severin| 33|
| John| 48|
+-------+---+
Run Code Online (Sandbox Code Playgroud)
在pyspark docs(链接)中,您可以找到有关createDataFrame函数的更多详细信息.