Sym*_*ony 13 python pandas pandas-groupby
我有一个数据帧df,如下所示:
| date | Revenue |
|-----------|---------|
| 6/2/2017 | 100 |
| 5/23/2017 | 200 |
| 5/20/2017 | 300 |
| 6/22/2017 | 400 |
| 6/21/2017 | 500 |
Run Code Online (Sandbox Code Playgroud)
我需要按月对上述数据进行分组,以获得输出:
| date | SUM(Revenue) |
|------|--------------|
| May | 500 |
| June | 1000 |
Run Code Online (Sandbox Code Playgroud)
我试过这段代码,但它不起作用:
df.groupby(month('date')).agg({'Revenue': 'sum'})
Run Code Online (Sandbox Code Playgroud)
我想只使用Pandas或Numpy而不使用其他库
shi*_*vsn 25
试试这个:
In [6]: df['date'] = pd.to_datetime(df['date'])
In [7]: df
Out[7]:
date Revenue
0 2017-06-02 100
1 2017-05-23 200
2 2017-05-20 300
3 2017-06-22 400
4 2017-06-21 500
In [59]: df.groupby(df['date'].dt.strftime('%B'))['Revenue'].sum().sort_values()
Out[59]:
date
May 500
June 1000
Run Code Online (Sandbox Code Playgroud)
qbz*_*ker 16
尝试使用pandas Grouper进行分组:
df = pd.DataFrame({'date':['6/2/2017','5/23/2017','5/20/2017','6/22/2017','6/21/2017'],'Revenue':[100,200,300,400,500]})
df.date = pd.to_datetime(df.date)
dg = df.groupby(pd.Grouper(key='date', freq='1M')).sum() # groupby each 1 month
dg.index = dg.index.strftime('%B')
Revenue
May 500
June 1000
Run Code Online (Sandbox Code Playgroud)
对于具有许多行的DataFrame,使用strftime会占用更多时间。如果date列已具有dtype datetime64[ns](可以用于pd.to_datetime()转换或parse_dates在csv导入期间指定,等等),则可以直接访问groupby标签的datetime属性(方法3)。加速是巨大的。
import numpy as np
import pandas as pd
T = pd.date_range(pd.Timestamp(0), pd.Timestamp.now()).to_frame(index=False)
T = pd.concat([T for i in range(1,10)])
T['revenue'] = pd.Series(np.random.randint(1000, size=T.shape[0]))
T.columns.values[0] = 'date'
print(T.shape) #(159336, 2)
print(T.dtypes) #date: datetime64[ns], revenue: int32
Run Code Online (Sandbox Code Playgroud)
%timeit -n 10 -r 7 T.groupby(T['date'].dt.strftime('%B'))['revenue'].sum()
Run Code Online (Sandbox Code Playgroud)
每个循环1.47 s±10.1毫秒(平均±标准偏差,共运行7次,每个循环10个)
%timeit -n 10 -r 7 T.groupby(pd.Grouper(key='date', freq='1M')).sum()
#NOTE Manually map months as integer {01..12} to strings
Run Code Online (Sandbox Code Playgroud)
每个循环56.9 ms±2.88 ms(平均±标准偏差。运行7次,每个循环10个)
%timeit -n 10 -r 7 T.groupby(T['date'].dt.month)['revenue'].sum()
#NOTE Manually map months as integer {01..12} to strings
Run Code Online (Sandbox Code Playgroud)
每个循环34毫秒±3.34毫秒(平均±标准偏差,共运行7次,每个循环10个循环)