mxx*_*xxk 16 airflow apache-airflow
有没有办法在Airflow中创建一个用户自定义的宏,它本身是从其他宏计算的?
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
dag = DAG(
'simple',
schedule_interval='0 21 * * *',
user_defined_macros={
'next_execution_date': '{{ dag.following_schedule(execution_date) }}',
},
)
task = BashOperator(
task_id='bash_op',
bash_command='echo "{{ next_execution_date }}"',
dag=dag,
)
Run Code Online (Sandbox Code Playgroud)
这里的用例是将新的Airflow v1.8 next_execution_date宏反向移植到Airflow v1.7中.不幸的是,这个模板在没有宏扩展时呈现:
$ airflow render simple bash_op 2017-08-09 21:00:00
# ----------------------------------------------------------
# property: bash_command
# ----------------------------------------------------------
echo "{{ dag.following_schedule(execution_date) }}"
Run Code Online (Sandbox Code Playgroud)
Gér*_*aud 23
以下是一些解决方案:
BashOperator以向上下文添加一些值class NextExecutionDateAwareBashOperator(BashOperator):
def render_template(self, attr, content, context):
dag = context['dag']
execution_date = context['execution_date']
context['next_execution_date'] = dag.following_schedule(execution_date)
return super().render_templates(attr, content, context)
# or in python 2:
# return super(NextExecutionDateAwareBashOperator, self).render_templates(attr, content, context)
Run Code Online (Sandbox Code Playgroud)
这种方法的好处:您可以在自定义运算符中捕获一些重复的代码.
不好的部分:在渲染模板化字段之前,您必须编写自定义运算符以向上下文添加值.
宏不一定是价值观.它们可以是功能.
在你的dag中:
def compute_next_execution_date(dag, execution_date):
return dag.following_schedule(execution_date)
dag = DAG(
'simple',
schedule_interval='0 21 * * *',
user_defined_macros={
'next_execution_date': compute_next_execution_date,
},
)
task = BashOperator(
task_id='bash_op',
bash_command='echo "{{ next_execution_date(dag, execution_date) }}"',
dag=dag,
)
Run Code Online (Sandbox Code Playgroud)
好的部分:您可以定义可重用的函数来处理运行时可用的值(XCom值,作业实例属性,任务实例属性等等),并使您的函数结果可用于呈现模板.
不好的部分(但不是那么烦人):你必须在每个dag中导入这样的函数作为用户定义的宏.
这个解决方案是最简单的(正如Ardan的回答所提到的),可能是你案例中最好的解决方案.
BashOperator(
task_id='bash_op',
bash_command='echo "{{ dag.following_schedule(execution_date) }}"',
dag=dag,
)
Run Code Online (Sandbox Code Playgroud)
非常适合像这样的简单电话.他们是直接可用一些其他对象宏(如task,task_instance等); 甚至一些标准模块可用(例如macros.time......).
小智 8
我会投票支持让 Airflow 插件注入你的预定义宏。使用此方法,您可以在任何 Operator 中使用预定义的宏,而无需声明任何内容。
以下是我们正在使用的一些自定义宏。使用示例: {{ macros.dagtz_next_execution_date(ti) }}
from airflow.plugins_manager import AirflowPlugin
from datetime import datetime, timedelta
from airflow.utils.db import provide_session
from airflow.models import DagRun
import pendulum
@provide_session
def _get_dag_run(ti, session=None):
"""Get DagRun obj of the TaskInstance ti
Args:
ti (TYPE): the TaskInstance object
session (None, optional): Not in use
Returns:
DagRun obj: the DagRun obj of the TaskInstance ti
"""
task = ti.task
dag_run = None
if hasattr(task, 'dag'):
dag_run = (
session.query(DagRun)
.filter_by(
dag_id=task.dag.dag_id,
execution_date=ti.execution_date)
.first()
)
session.expunge_all()
session.commit()
return dag_run
def ds_add_no_dash(ds, days):
"""
Add or subtract days from a YYYYMMDD
:param ds: anchor date in ``YYYYMMDD`` format to add to
:type ds: str
:param days: number of days to add to the ds, you can use negative values
:type days: int
>>> ds_add('20150101', 5)
'20150106'
>>> ds_add('20150106', -5)
'20150101'
"""
ds = datetime.strptime(ds, '%Y%m%d')
if days:
ds = ds + timedelta(days)
return ds.isoformat()[:10].replace('-', '')
def dagtz_execution_date(ti):
"""get the TaskInstance execution date (in DAG timezone) in pendulum obj
Args:
ti (TaskInstance): the TaskInstance object
Returns:
pendulum obj: execution_date in pendulum object (in DAG tz)
"""
execution_date_pdl = pendulum.instance(ti.execution_date)
dagtz_execution_date_pdl = execution_date_pdl.in_timezone(ti.task.dag.timezone)
return dagtz_execution_date_pdl
def dagtz_next_execution_date(ti):
"""get the TaskInstance next execution date (in DAG timezone) in pendulum obj
Args:
ti (TaskInstance): the TaskInstance object
Returns:
pendulum obj: next execution_date in pendulum object (in DAG tz)
"""
# For manually triggered dagruns that aren't run on a schedule, next/previous
# schedule dates don't make sense, and should be set to execution date for
# consistency with how execution_date is set for manually triggered tasks, i.e.
# triggered_date == execution_date.
dag_run = _get_dag_run(ti)
if dag_run and dag_run.external_trigger:
next_execution_date = ti.execution_date
else:
next_execution_date = ti.task.dag.following_schedule(ti.execution_date)
next_execution_date_pdl = pendulum.instance(next_execution_date)
dagtz_next_execution_date_pdl = next_execution_date_pdl.in_timezone(ti.task.dag.timezone)
return dagtz_next_execution_date_pdl
def dagtz_next_ds(ti):
"""get the TaskInstance next execution date (in DAG timezone) in YYYY-MM-DD string
"""
dagtz_next_execution_date_pdl = dagtz_next_execution_date(ti)
return dagtz_next_execution_date_pdl.strftime('%Y-%m-%d')
def dagtz_next_ds_nodash(ti):
"""get the TaskInstance next execution date (in DAG timezone) in YYYYMMDD string
"""
dagtz_next_ds_str = dagtz_next_ds(ti)
return dagtz_next_ds_str.replace('-', '')
def dagtz_prev_execution_date(ti):
"""get the TaskInstance previous execution date (in DAG timezone) in pendulum obj
Args:
ti (TaskInstance): the TaskInstance object
Returns:
pendulum obj: previous execution_date in pendulum object (in DAG tz)
"""
# For manually triggered dagruns that aren't run on a schedule, next/previous
# schedule dates don't make sense, and should be set to execution date for
# consistency with how execution_date is set for manually triggered tasks, i.e.
# triggered_date == execution_date.
dag_run = _get_dag_run(ti)
if dag_run and dag_run.external_trigger:
prev_execution_date = ti.execution_date
else:
prev_execution_date = ti.task.dag.previous_schedule(ti.execution_date)
prev_execution_date_pdl = pendulum.instance(prev_execution_date)
dagtz_prev_execution_date_pdl = prev_execution_date_pdl.in_timezone(ti.task.dag.timezone)
return dagtz_prev_execution_date_pdl
def dagtz_prev_ds(ti):
"""get the TaskInstance prev execution date (in DAG timezone) in YYYY-MM-DD string
"""
dagtz_prev_execution_date_pdl = dagtz_prev_execution_date(ti)
return dagtz_prev_execution_date_pdl.strftime('%Y-%m-%d')
def dagtz_prev_ds_nodash(ti):
"""get the TaskInstance prev execution date (in DAG timezone) in YYYYMMDD string
"""
dagtz_prev_ds_str = dagtz_prev_ds(ti)
return dagtz_prev_ds_str.replace('-', '')
# Defining the plugin class
class AirflowTestPlugin(AirflowPlugin):
name = "custom_macros"
macros = [dagtz_execution_date, ds_add_no_dash,
dagtz_next_execution_date, dagtz_next_ds, dagtz_next_ds_nodash,
dagtz_prev_execution_date, dagtz_prev_ds, dagtz_prev_ds_nodash]
Run Code Online (Sandbox Code Playgroud)
user_defined_macros默认情况下不作为模板处理。如果您想在 a 中保留模板user_defined_macro(或者在变量中使用模板params),您始终可以手动重新运行模板函数:
class DoubleTemplatedBashOperator(BashOperator):
def pre_execute(self, context):
context['ti'].render_templates()
Run Code Online (Sandbox Code Playgroud)
这适用于不引用其他参数或 UDM 的模板。这样,您就可以拥有“两层深度”的模板。
或者将 UDM 直接放在BashOperator's 命令中(最简单的解决方案):
BashOperator(
task_id='bash_op',
bash_command='echo "{{ dag.following_schedule(execution_date) }}"',
dag=dag,
)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
6262 次 |
| 最近记录: |