将 Keras 模型的输出重新缩放回原始比例

Mr.*_*. T 4 numpy machine-learning normalization scikit-learn keras

我是神经网络的新手(只是免责声明)。

我有一个基于 8 个特征预测混凝土强度的回归问题。我首先做的是使用最小-最大标准化重新调整数据:

# Normalize data between 0 and 1
from sklearn.preprocessing import MinMaxScaler

min_max = MinMaxScaler()
dataframe2 = pd.DataFrame(min_max.fit_transform(dataframe), columns = dataframe.columns)
Run Code Online (Sandbox Code Playgroud)

然后将数据帧转换为numpy数组并将其拆分为X_train,y_train,X_test,y_test。现在这是网络本身的 Keras 代码:

from keras.models import Sequential
from keras.layers import Dense, Activation

#Set the params of the Neural Network
batch_size = 64
num_of_epochs = 40
hidden_layer_size = 256

model = Sequential()
model.add(Dense(hidden_layer_size, input_shape=(8, )))
model.add(Activation('relu'))
model.add(Dense(hidden_layer_size))
model.add(Activation('relu'))
model.add(Dense(hidden_layer_size))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Activation('linear'))


model.compile(loss='mean_squared_error', # using the mean squared error function
              optimizer='adam', # using the Adam optimiser
              metrics=['mae', 'mse']) # reporting the accuracy with mean absolute error and mean squared error

model.fit(X_train, y_train, # Train the model using the training set...
          batch_size=batch_size, epochs=num_of_epochs,
          verbose=0, validation_split=0.1)

# All predictions in one array
predictions = model.predict(X_test)
Run Code Online (Sandbox Code Playgroud)

问题:

  1. 预测数组将具有缩放格式的所有值(0 到 1 之间),但显然我需要预测为其真实值。如何将这些输出重新调整回实际值?

  2. 最小-最大标准化还是 Z 分数标准化更适合回归问题?这个“批量归一化”怎么样?

谢谢你,

P. *_*eri 5

根据doc,该类MinMaxScaler有一个inverse_transform方法可以执行您想要的操作:

inverse_transform(X):根据feature_range撤销X的缩放。