TensorFlow TypeError:传递给参数输入的值具有DataType uint8,不在允许值列表中:float16,float32

azm*_*ath 11 python machine-learning neural-network tensorflow

我想在过去的3天里让一个简单的CNN去训练.

首先,我设置了一个输入管道/队列配置,从目录树中读取图像并准备批处理.

我在这个链接上得到了这个代码.所以,我现在有了train_image_batchtrain_label_batch ,我需要提供给我的CNN.

train_image_batch, train_label_batch = tf.train.batch(
        [train_image, train_label],
        batch_size=BATCH_SIZE
        # ,num_threads=1
    )
Run Code Online (Sandbox Code Playgroud)

我无法弄清楚如何.我正在使用此链接提供的CNN代码.

# Input Layer
input_layer = tf.reshape(train_image_batch, [-1, IMAGE_HEIGHT, IMAGE_WIDTH, NUM_CHANNELS])

# Convolutional Layer #1
conv1 = new_conv_layer(input_layer, NUM_CHANNELS, 5, 32, 2)

 # Pooling Layer #1
pool1 = new_pooling_layer(conv1, 2, 2)
Run Code Online (Sandbox Code Playgroud)

打印时的input_layer显示了这一点

张量("重塑:0",形状=(5,120,120,3),dtype = uint8)

下一行与TypeError崩溃; conv1 = new_conv_layer(...).new_conv_layer函数的主体如下所示

def new_conv_layer(input,              # The previous layer.
               num_input_channels, # Num. channels in prev. layer.
               filter_size,        # Width and height of each filter.
               num_filters,        # Number of filters.
               stride):

# Shape of the filter-weights for the convolution.
# This format is determined by the TensorFlow API.
shape = [filter_size, filter_size, num_input_channels, num_filters]

# Create new weights aka. filters with the given shape.
weights = tf.Variable(tf.truncated_normal(shape, stddev=0.05))

# Create new biases, one for each filter.
biases = tf.Variable(tf.constant(0.05, shape=[num_filters]))

# Create the TensorFlow operation for convolution.
# Note the strides are set to 1 in all dimensions.
# The first and last stride must always be 1,
# because the first is for the image-number and
# the last is for the input-channel.
# But e.g. strides=[1, 2, 2, 1] would mean that the filter
# is moved 2 pixels across the x- and y-axis of the image.
# The padding is set to 'SAME' which means the input image
# is padded with zeroes so the size of the output is the same.
layer = tf.nn.conv2d(input=input,
                     filter=weights,
                     strides=[1, stride, stride, 1],
                     padding='SAME')

# Add the biases to the results of the convolution.
# A bias-value is added to each filter-channel.
layer += biases

# Rectified Linear Unit (ReLU).
# It calculates max(x, 0) for each input pixel x.
# This adds some non-linearity to the formula and allows us
# to learn more complicated functions.
layer = tf.nn.relu(layer)

# Note that ReLU is normally executed before the pooling,
# but since relu(max_pool(x)) == max_pool(relu(x)) we can
# save 75% of the relu-operations by max-pooling first.

# We return both the resulting layer and the filter-weights
# because we will plot the weights later.
return layer, weights
Run Code Online (Sandbox Code Playgroud)

正是因为这个错误,它在tf.nn.conv2d崩溃了

TypeError:传递给参数'input'的值的DataType uint8不在允许值列表中:float16,float32

vij*_*y m 22

输入管道中的图像是'uint8'类型,你需要输入'float32',你可以在图像jpeg解码器之后执行此操作:

image = tf.image.decode_jpeg(...
image = tf.cast(image, tf.float32)
Run Code Online (Sandbox Code Playgroud)

  • @Czechnology,您也可以使用 float16。tf.nn.conv 的输出返回与输入相同的类型。所以在这种情况下,输出也将是 float16,这是一个降低的精度,不推荐(除非你需要它来减少内存占用但精度较低)。 (3认同)
  • 我的天啊!在我到处阅读的任何 TF 教程中,都没有人提到过这一点。非常感谢! (2认同)