jov*_*cbg 4 python dataframe pandas
我有一个带有 PERIOD_START_TIME、ID、更多列和列 VALUE 的数据框。我需要的是按 PERIOD_START_TIME 和 ID 分组(因为按时间和 ID 有重复的行)并取列 VALUE 的最大值。df:
PERIOD_START_TIME ID VALUE
06.01.2017 02:00:00 55 ... 35
06.01.2017 02:00:00 55 ... 22
06.01.2017 03:00:00 55 ... 63
06.01.2017 03:00:00 55 ... 33
06.01.2017 04:00:00 55 ... 63
06.01.2017 04:00:00 55 ... 45
06.01.2017 02:00:00 65 ... 10
06.01.2017 02:00:00 65 ... 5
06.01.2017 03:00:00 65 ... 22
06.01.2017 03:00:00 65 ... 5
06.01.2017 04:00:00 65 ... 12
06.01.2017 04:00:00 65 ... 15
Run Code Online (Sandbox Code Playgroud)
期望的输出:
PERIOD_START_TIME ID ... VALUE
06.01.2017 02:00:00 55 ... 35
06.01.2017 03:00:00 55 ... 63
06.01.2017 04:00:00 55 ... 63
06.01.2017 02:00:00 65 ... 10
06.01.2017 03:00:00 65 ... 22
06.01.2017 04:00:00 65 ... 15
Run Code Online (Sandbox Code Playgroud)
jez*_*ael 11
print (df)
PERIOD_START_TIME ID A VALUE
0 06.01.2017 02:00:00 55 8 35
1 06.01.2017 02:00:00 55 8 22
2 06.01.2017 03:00:00 55 8 63
3 06.01.2017 03:00:00 55 8 33
4 06.01.2017 04:00:00 55 8 63
5 06.01.2017 04:00:00 55 8 45
6 06.01.2017 02:00:00 65 8 10
7 06.01.2017 02:00:00 65 8 5
8 06.01.2017 03:00:00 65 8 22
9 06.01.2017 03:00:00 65 8 5
10 06.01.2017 04:00:00 65 8 12
11 06.01.2017 04:00:00 65 8 15
df = df.groupby(['PERIOD_START_TIME','ID'], as_index=False)['VALUE'].max()
Run Code Online (Sandbox Code Playgroud)
或者:
df = df.groupby(['PERIOD_START_TIME','ID'])['VALUE'].max().reset_index()
Run Code Online (Sandbox Code Playgroud)
print (df)
PERIOD_START_TIME ID VALUE
0 06.01.2017 02:00:00 55 35
1 06.01.2017 02:00:00 65 10
2 06.01.2017 03:00:00 55 63
3 06.01.2017 03:00:00 65 22
4 06.01.2017 04:00:00 55 63
5 06.01.2017 04:00:00 65 15
Run Code Online (Sandbox Code Playgroud)
df = df.loc[df.groupby(['PERIOD_START_TIME','ID'])['VALUE'].idxmax()]
print (df)
PERIOD_START_TIME ID A VALUE
0 06.01.2017 02:00:00 55 8 35
6 06.01.2017 02:00:00 65 8 10
2 06.01.2017 03:00:00 55 8 63
8 06.01.2017 03:00:00 65 8 22
4 06.01.2017 04:00:00 55 8 63
11 06.01.2017 04:00:00 65 8 15
Run Code Online (Sandbox Code Playgroud)
选择:
cols = ['PERIOD_START_TIME','ID']
df = df.sort_values(cols).groupby(cols, as_index=False).first()
print (df)
PERIOD_START_TIME ID A VALUE
0 06.01.2017 02:00:00 55 8 35
1 06.01.2017 02:00:00 65 8 10
2 06.01.2017 03:00:00 55 8 63
3 06.01.2017 03:00:00 65 8 22
4 06.01.2017 04:00:00 55 8 63
5 06.01.2017 04:00:00 65 8 12
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
6526 次 |
最近记录: |