Nic*_*hop 5 machine-learning unsupervised-learning keras
Keras中有没有办法指定不需要传递目标数据的损失函数?
我尝试指定一个y_true省略参数的损失函数,如下所示:
def custom_loss(y_pred):
Run Code Online (Sandbox Code Playgroud)
但我收到以下错误:
Traceback (most recent call last):
File "siamese.py", line 234, in <module>
model.compile(loss=custom_loss,optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0))
File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py", line 911, in compile
sample_weight, mask)
File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py", line 436, in weighted
score_array = fn(y_true, y_pred)
TypeError: custom_loss() takes exactly 1 argument (2 given)
Run Code Online (Sandbox Code Playgroud)
然后我尝试fit()在不指定任何目标数据的情况下调用:
model.fit(x=[x_train,x_train_warped, affines], batch_size = bs, epochs=1)
Run Code Online (Sandbox Code Playgroud)
但看起来不传递任何目标数据会导致错误:
Traceback (most recent call last):
File "siamese.py", line 264, in <module>
model.fit(x=[x_train,x_train_warped, affines], batch_size = bs, epochs=1)
File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py", line 1435, in fit
batch_size=batch_size)
File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py", line 1322, in _standardize_user_data
in zip(y, sample_weights, class_weights, self._feed_sample_weight_modes)]
File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py", line 577, in _standardize_weights
return np.ones((y.shape[0],), dtype=K.floatx())
AttributeError: 'NoneType' object has no attribute 'shape'
Run Code Online (Sandbox Code Playgroud)
我可以手动创建与神经网络输出形状相同的虚拟数据,但这看起来非常混乱。有没有一种简单的方法可以在 Keras 中指定我缺少的无监督损失函数?
| 归档时间: |
|
| 查看次数: |
4023 次 |
| 最近记录: |