使用groupby的列的累积列表

use*_*113 2 python list dataframe pandas

嗨所以我有以下数据帧:

   Fruit  metric
0  Apple     NaN
1  Apple   100.0
2  Apple     NaN
3  Peach    70.0
4   Pear   120.0
5   Pear   100.0
6   Pear     NaN
Run Code Online (Sandbox Code Playgroud)

我的目标是按果实分组并按顺序将每个值的metric非空值添加到具有其自己的单独列的累积列表中,如下所示:

   Fruit  metric  metric_cum
0  Apple     NaN          []
1  Apple   100.0       [100]
2  Apple     NaN       [100]
3  Peach    70.0        [70]
4   Pear   120.0       [120]
5   Pear   100.0  [120, 100]
6   Pear     NaN  [120, 100]
Run Code Online (Sandbox Code Playgroud)

我试过这样做:

df['metric1'] = df['metric'].astype(str)
df.groupby('Fruit')['metric1'].cumsum()
Run Code Online (Sandbox Code Playgroud)

但这导致了一个DataError: No numeric types to aggregate.

我也试过这样做:

df.groupby('Fruit')['metric'].apply(list)
Run Code Online (Sandbox Code Playgroud)

导致:

Fruit
Apple      [nan, 100.0, nan]
Peach                 [70.0]
Pear     [120.0, 100.0, nan]
Name: metric, dtype: object
Run Code Online (Sandbox Code Playgroud)

但这不是累积的,也不能成为一个专栏.谢谢你的帮助

jez*_*ael 5

使用:

df['metric'] = df['metric'].apply(lambda x: [] if pd.isnull(x) else [int(x)])
df['metric_cum'] = df.groupby('Fruit')['metric'].apply(lambda x: x.cumsum())
print (df)
   Fruit metric  metric_cum
0  Apple     []          []
1  Apple  [100]       [100]
2  Apple     []       [100]
3  Peach   [70]        [70]
4   Pear  [120]       [120]
5   Pear  [100]  [120, 100]
6   Pear     []  [120, 100]
Run Code Online (Sandbox Code Playgroud)

要么:

a = df['metric'].apply(lambda x: [] if pd.isnull(x) else [int(x)])
df['metric_cum'] = a.groupby(df['Fruit']).apply(lambda x: x.cumsum())
print (df)
   Fruit  metric  metric_cum
0  Apple     NaN          []
1  Apple   100.0       [100]
2  Apple     NaN       [100]
3  Peach    70.0        [70]
4   Pear   120.0       [120]
5   Pear   100.0  [120, 100]
6   Pear     NaN  [120, 100]
Run Code Online (Sandbox Code Playgroud)