fun*_*guy 7 python linear-regression correlation categorical-data
我有一个数据集,包括分类变量(二进制)和连续变量.我正在尝试应用线性回归模型来预测连续变量.有人可以让我知道如何检查分类变量和连续目标变量之间的相关性.
现行代码:
import pandas as pd
df_hosp = pd.read_csv('C:\Users\LAPPY-2\Desktop\LengthOfStay.csv')
data = df_hosp[['lengthofstay', 'male', 'female', 'dialysisrenalendstage', 'asthma', \
'irondef', 'pneum', 'substancedependence', \
'psychologicaldisordermajor', 'depress', 'psychother', \
'fibrosisandother', 'malnutrition', 'hemo']]
print data.corr()
Run Code Online (Sandbox Code Playgroud)
除了lengthofstay之外的所有变量都是绝对的.这有用吗?
在此处将分类变量转换为虚拟变量,并将变量放在numpy.array中.例如:
data.csv:
age,size,color_head
4,50,black
9,100,blonde
12,120,brown
17,160,black
18,180,brown
Run Code Online (Sandbox Code Playgroud)
提取数据:
import numpy as np
import pandas as pd
df = pd.read_csv('data.csv')
Run Code Online (Sandbox Code Playgroud)
DF:
将分类变量转换color_head
为虚拟变量:
df_dummies = pd.get_dummies(df['color_head'])
del df_dummies[df_dummies.columns[-1]]
df_new = pd.concat([df, df_dummies], axis=1)
del df_new['color_head']
Run Code Online (Sandbox Code Playgroud)
df_new:
把它放在numpy数组中:
x = df_new.values
Run Code Online (Sandbox Code Playgroud)
计算相关性:
correlation_matrix = np.corrcoef(x.T)
print(correlation_matrix)
Run Code Online (Sandbox Code Playgroud)
输出:
array([[ 1. , 0.99574691, -0.23658011, -0.28975028],
[ 0.99574691, 1. , -0.30318496, -0.24026862],
[-0.23658011, -0.30318496, 1. , -0.40824829],
[-0.28975028, -0.24026862, -0.40824829, 1. ]])
Run Code Online (Sandbox Code Playgroud)
见:
归档时间: |
|
查看次数: |
13765 次 |
最近记录: |