Ngu*_*inh 5 artificial-intelligence machine-learning tensorflow
我需要随着时间的推移得到损失历史,以图形方式绘制它.这是我的代码框架:
optimizer = tf.contrib.opt.ScipyOptimizerInterface(loss, method='L-BFGS-B',
options={'maxiter': args.max_iterations, 'disp': print_iterations})
optimizer.minimize(sess, loss_callback=append_loss_history)
Run Code Online (Sandbox Code Playgroud)
随着append_loss_history
定义:
def append_loss_history(**kwargs):
global step
if step % 50 == 0:
loss_history.append(loss.eval())
step += 1
Run Code Online (Sandbox Code Playgroud)
当我看到详细的输出时ScipyOptimizerInterface
,损失实际上会随着时间的推移而减少.但是当我打印时loss_history
,损失几乎是一样的.
请参阅文档:"受优化影响的变量在优化结束时就地更新" https://www.tensorflow.org/api_docs/python/tf/contrib/opt/ScipyOptimizerInterface.这是损失不变的原因吗?
我认为你已经解决了这个问题;变量本身在优化结束之前不会被修改(而不是被馈送到 session.run 调用),并且评估“反向通道”张量会获取未修改的变量。相反,使用fetches
参数 tooptimizer.minimize
搭载session.run
指定提要的调用:
import tensorflow as tf
def print_loss(loss_evaled, vector_evaled):
print(loss_evaled, vector_evaled)
vector = tf.Variable([7., 7.], 'vector')
loss = tf.reduce_sum(tf.square(vector))
optimizer = tf.contrib.opt.ScipyOptimizerInterface(
loss, method='L-BFGS-B',
options={'maxiter': 100})
with tf.Session() as session:
tf.global_variables_initializer().run()
optimizer.minimize(session,
loss_callback=print_loss,
fetches=[loss, vector])
print(vector.eval())
Run Code Online (Sandbox Code Playgroud)
(根据文档中的示例修改)。这将打印具有更新值的张量:
98.0 [ 7. 7.]
79.201 [ 6.29289341 6.29289341]
7.14396e-12 [ -1.88996808e-06 -1.88996808e-06]
[ -1.88996808e-06 -1.88996808e-06]
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
1758 次 |
最近记录: |