"训练损失"在机器学习中意味着什么?

Wil*_*son 2 machine-learning tensorflow

我在tensorflow网站上找到了一些示例代码,如下所示.

input_fn = tf.contrib.learn.io.numpy_input_fn({"x":x_train}, y_train, batch_size=4, num_epochs=1000)
eval_input_fn = tf.contrib.learn.io.numpy_input_fn({"x":x_eval}, y_eval, batch_size=4, num_epochs=1000)

# We can invoke 1000 training steps by invoking the  method and passing the
# training data set.
estimator.fit(input_fn=input_fn, steps=1000)

# Here we evaluate how well our model did.
train_loss = estimator.evaluate(input_fn=input_fn)
eval_loss = estimator.evaluate(input_fn=eval_input_fn)

print("train loss: %r"% train_loss)
print("eval loss: %r"% eval_loss)
Run Code Online (Sandbox Code Playgroud)

你能告诉我"训练损失"的含义吗?

Mih*_*uja 5

培训损失是培训数据的损失.Loss是一个函数,它接收正确的输出和模型输出并计算它们之间的误差.然后使用损失来根据错误的大小和最有贡献的元素来调整权重.