Sparklyr/Hive:如何正确使用正则表达式(regexp_replace)?

ℕʘʘ*_*ḆḽḘ 3 hive r apache-spark sparklyr

请考虑以下示例

dataframe_test<- data_frame(mydate = c('2011-03-01T00:00:04.226Z', '2011-03-01T00:00:04.226Z'))

# A tibble: 2 x 1
                    mydate
                     <chr>
1 2011-03-01T00:00:04.226Z
2 2011-03-01T00:00:04.226Z

sdf <- copy_to(sc, dataframe_test, overwrite = TRUE)

> sdf
# Source:   table<dataframe_test> [?? x 1]
# Database: spark_connection
                    mydate
                     <chr>
1 2011-03-01T00:00:04.226Z
2 2011-03-01T00:00:04.226Z
Run Code Online (Sandbox Code Playgroud)

我想修改字符timestamp,使其具有更传统的格式.我尝试这样做regexp_replace但它失败了.

> sdf <- sdf %>% mutate(regex = regexp_replace(mydate, '(\\d{4})-(\\d{2})-(\\d{2})T(\\d{2}):(\\d{2}):(\\d{2}).(\\d{3})Z', '$1-$2-$3 $4:$5:$6.$7'))
> sdf
# Source:   lazy query [?? x 2]
# Database: spark_connection
                    mydate                    regex
                     <chr>                    <chr>
1 2011-03-01T00:00:04.226Z 2011-03-01T00:00:04.226Z
2 2011-03-01T00:00:04.226Z 2011-03-01T00:00:04.226Z
Run Code Online (Sandbox Code Playgroud)

有任何想法吗?什么是正确的语法?

zer*_*323 5

Spark SQL和Hive提供两种不同的功能:

  • regexp_extract - 它采用字符串,模式和要提取的组的索引.
  • regexp_replace - 它采用字符串,模式和替换字符串.

前一个可用于提取单个组,其索引语义 for 相同java.util.regex.Matcher

对于regexp_replacepattern必须匹配整个字符串,如果没有匹配,则返回输入字符串:

sdf %>% mutate(
 regex = regexp_replace(mydate, '^([0-9]{4}).*', "$1"),
 regexp_bad = regexp_replace(mydate, '([0-9]{4})', "$1"))

## Source:   query [2 x 3]
## Database: spark connection master=local[8] app=sparklyr local=TRUE
## 
## # A tibble: 2 x 3
##                     mydate regex               regexp_bad
##                      <chr> <chr>                    <chr>
## 1 2011-03-01T00:00:04.226Z  2011 2011-03-01T00:00:04.226Z
## 2 2011-03-01T00:00:04.226Z  2011 2011-03-01T00:00:04.226Z
Run Code Online (Sandbox Code Playgroud)

虽然regexp_extract不需要:

sdf %>% mutate(regex = regexp_extract(mydate, '([0-9]{4})', 1))

## Source:   query [2 x 2]
## Database: spark connection master=local[8] app=sparklyr local=TRUE
## 
## # A tibble: 2 x 2
##                     mydate regex
##                      <chr> <chr>
## 1 2011-03-01T00:00:04.226Z  2011
## 2 2011-03-01T00:00:04.226Z  2011
Run Code Online (Sandbox Code Playgroud)

此外,由于间接执行(R - > Java),您必须转义两次:

sdf %>% mutate(
  regex = regexp_replace(
    mydate, 
    '^(\\\\d{4})-(\\\\d{2})-(\\\\d{2})T(\\\\d{2}):(\\\\d{2}):(\\\\d{2}).(\\\\d{3})Z$',
    '$1-$2-$3 $4:$5:$6.$7'))
Run Code Online (Sandbox Code Playgroud)

通常会使用Spark datetime函数:

spark_session(sc) %>%  
  invoke("sql",
    "SELECT *, DATE_FORMAT(CAST(mydate AS timestamp), 'yyyy-MM-dd HH:mm:ss.SSS') parsed from dataframe_test") %>% 
  sdf_register


## Source:   query [2 x 2]
## Database: spark connection master=local[8] app=sparklyr local=TRUE
## 
## # A tibble: 2 x 2
##                     mydate                  parsed
##                      <chr>                   <chr>
## 1 2011-03-01T00:00:04.226Z 2011-03-01 01:00:04.226
## 2 2011-03-01T00:00:04.226Z 2011-03-01 01:00:04.226
Run Code Online (Sandbox Code Playgroud)

但遗憾的sparklyr是,这个领域似乎非常有限,并将时间戳视为字符串.

另请参阅使用hive命令更改DF中的字符串,使用sparklyr更改mutate.