Lin*_*gxB 7 python deep-learning keras keras-2
我正在尝试建立下图所示的模型。想法是采用多个分类特征(单热矢量)并将其分别嵌入,然后将这些嵌入的矢量与3D张量组合以用于LSTM。
使用Keras2.0.2中的以下代码,在创建Model()具有多个输入的对象时,会引发AttributeError: 'NoneType' object has no attribute 'inbound_nodes'类似于此问题的问题。谁能帮助我找出问题所在?
模型:
码:
from keras.layers import Dense, LSTM, Input
from keras.layers.merge import concatenate
from keras import backend as K
from keras.models import Model
cat_feats_dims = [315, 14] # Dimensions of the cat_feats
emd_inputs = [Input(shape=(in_size,)) for in_size in cat_feats_dims]
emd_out = concatenate([Dense(20, use_bias=False)(inp) for inp in emd_inputs])
emd_out_3d = K.repeat(emd_out, 10)
lstm_input = Input(shape=(10,5))
merged = concatenate([emd_out_3d,lstm_input])
lstm_output = LSTM(32)(merged)
dense_output = Dense(1, activation='linear')(lstm_output)
model = Model(inputs=emd_inputs+[lstm_input], outputs=[dense_output])
#ERROR MESSAGE
Traceback (most recent call last):
File "C:\Program Files\Anaconda2\envs\mle-env\lib\site-packages\IPython\core\interactiveshell.py", line 2881, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-2-a9da7f276aa7>", line 14, in <module>
model = Model(inputs=emd_inputs+[lstm_input], outputs=[dense_output])
File "C:\Program Files\Anaconda2\envs\mle-env\lib\site-packages\keras\legacy\interfaces.py", line 88, in wrapper
return func(*args, **kwargs)
File "C:\Program Files\Anaconda2\envs\mle-env\lib\site-packages\keras\engine\topology.py", line 1648, in __init__
build_map_of_graph(x, seen_nodes, depth=0)
File "C:\Program Files\Anaconda2\envs\mle-env\lib\site-packages\keras\engine\topology.py", line 1644, in build_map_of_graph
layer, node_index, tensor_index)
File "C:\Program Files\Anaconda2\envs\mle-env\lib\site-packages\keras\engine\topology.py", line 1644, in build_map_of_graph
layer, node_index, tensor_index)
File "C:\Program Files\Anaconda2\envs\mle-env\lib\site-packages\keras\engine\topology.py", line 1639, in build_map_of_graph
next_node = layer.inbound_nodes[node_index]
AttributeError: 'NoneType' object has no attribute 'inbound_nodes'
Run Code Online (Sandbox Code Playgroud)
keras.backend.repeat是一个函数,而不是一个层。尝试改用keras.layers.core.RepeatVector。它具有与功能相同的功能。
emd_out_3d = RepeatVector(10)(emd_out)
Run Code Online (Sandbox Code Playgroud)
小智 6
不仅适用于这种情况,而且在一般情况下,如果您想向模型中添加一些没有等效层实现的函数,您可以将该函数设为 Lambda 层。
例如,我需要将轴 = 1 上的均值运算符添加到我的模型中。这是假设我当前名为 xinput 的张量和输出张量输出的代码,代码应如下所示。
# suppose my tensor named xinput
meaner=Lambda(lambda x: K.mean(x, axis=1) )
agglayer = meaner(xinput)
output = Dense(1, activation="linear", name="output_layer")(agglayer)
Run Code Online (Sandbox Code Playgroud)
不是使用 Lambda 函数,而是直接添加 K.mean 函数,你会得到同样的错误。
| 归档时间: |
|
| 查看次数: |
13677 次 |
| 最近记录: |