Sur*_*aja 1 python numpy pandas
我希望将每对连续列分开并重新填充计算值.例如,我在下面有以下DataFrame.在下面的数据框中,我想划分B/A和D/C. 然后应在B栏中重新填充B/A的结果,D/C的结果应填入D栏.
请注意,我的实际DataFrame非常大.它有86列.我更希望有一个自动化方案,它可以遍历所有列(即86列),这些列可以更改43列中的值或执行此操作的内置Pandas函数.
A B C D
0 2.056494 -3.002088 0.516822 -1.338846
1 0.082295 1.387734 -0.495226 1.119553
2 0.298618 -0.130158 0.804705 -0.120110
3 0.178088 1.137238 1.331856 -0.472720
4 -0.378670 1.649041 -0.240723 2.044113
5 3.602587 1.152502 -0.170646 -0.961922
6 -0.285846 -0.154891 1.492879 0.752487
7 -0.412809 1.076796 -2.001025 -0.954021
Run Code Online (Sandbox Code Playgroud)
感谢您阅读本文并感谢您的帮助.
您可以使用.iloc切片每隔一列,然后.values删除两个轴上的索引,以便它们正确对齐:
>>> df.iloc[:, 1::2] /= df.iloc[:, ::2].values
>>> df
A B C D
0 2.056494 -1.459809 0.516822 -2.590536
1 0.082295 16.862920 -0.495226 -2.260691
2 0.298618 -0.435868 0.804705 -0.149260
3 0.178088 6.385820 1.331856 -0.354933
4 -0.378670 -4.354823 -0.240723 -8.491557
5 3.602587 0.319910 -0.170646 5.636944
6 -0.285846 0.541869 1.492879 0.504051
7 -0.412809 -2.608461 -2.001025 0.476766
Run Code Online (Sandbox Code Playgroud)
.iloc 允许我们使用标准Python切片进行位置索引:
>>> df.iloc[:, 1::2]
B D
0 -1.459809 -2.590536
1 16.862920 -2.260691
2 -0.435868 -0.149260
3 6.385820 -0.354933
4 -4.354823 -8.491557
5 0.319910 5.636944
6 0.541869 0.504051
7 -2.608461 0.476766
Run Code Online (Sandbox Code Playgroud)
没有它.values,我们仍然会有列名,这将给我们
>>> df.iloc[:, 1::2] / df.iloc[:, ::2]
A B C D
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 NaN NaN NaN NaN
3 NaN NaN NaN NaN
4 NaN NaN NaN NaN
5 NaN NaN NaN NaN
6 NaN NaN NaN NaN
7 NaN NaN NaN NaN
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
35 次 |
| 最近记录: |