PySpark 用数组替换 Null

sim*_*nst 9 arrays null pyspark

通过 ID 连接后,我的数据框如下所示:

ID  |  Features  |  Vector
1   | (50,[...]  | Array[1.1,2.3,...]
2   | (50,[...]  | Null
Run Code Online (Sandbox Code Playgroud)

我最终得到了“向量”列中某些 ID 的空值。我想用 300 维的零数组替换这些 Null 值(与非空向量条目的格式相同)。df.fillna 在这里不起作用,因为它是我想插入的数组。知道如何在 PySpark 中实现这一点吗?

- -编辑 - -

这篇文章类似,我目前的方法是:

df_joined = id_feat_vec.join(new_vec_df, "id", how="left_outer")

fill_with_vector = udf(lambda x: x if x is not None else np.zeros(300),
                                 ArrayType(DoubleType()))

df_new = df_joined.withColumn("vector", fill_with_vector("vector"))
Run Code Online (Sandbox Code Playgroud)

不幸的是,收效甚微:

org.apache.spark.SparkException: Job aborted due to stage failure: Task 0in stage 848.0 failed 4 times, most recent failure: Lost task 0.3 in stage 848.0 (TID 692199, 10.179.224.107, executor 16): net.razorvine.pickle.PickleException: expected zero arguments for construction of ClassDict (for numpy.core.multiarray._reconstruct)
---------------------------------------------------------------------------
Py4JJavaError                             Traceback (most recent call last)
<ipython-input-193-e55fed27fcd8> in <module>()
      5 a = df_joined.withColumn("vector", fill_with_vector("vector"))
      6 
----> 7 a.show()

/databricks/spark/python/pyspark/sql/dataframe.pyc in show(self, n, truncate)
    316         """
    317         if isinstance(truncate, bool) and truncate:
--> 318             print(self._jdf.showString(n, 20))
    319         else:
    320             print(self._jdf.showString(n, int(truncate)))

/databricks/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py in __call__(self, *args)
   1131         answer = self.gateway_client.send_command(command)
   1132         return_value = get_return_value(
-> 1133             answer, self.gateway_client, self.target_id, self.name)
   1134 
   1135         for temp_arg in temp_args:
Run Code Online (Sandbox Code Playgroud)

Rya*_*ier 6

更新:我无法使用 SQL 表达式形式来创建双精度数组。'array(0.0, ...)' 似乎创建了一个 Decimal 类型的数组。但是,使用 python 函数,你可以让它正确地创建一个双精度数组。

一般的想法是使用 when/otherwise 函数有选择地只更新你想要的行。您可以提前将想要的文字值定义为一列,然后将其转储到“THEN”子句中。

from pyspark.sql.types import *
from pyspark.sql.functions import *

schema = StructType([StructField("f1", LongType()), StructField("f2", ArrayType(DoubleType(), False))])
data = [(1, [10.0, 11.0]), (2, None), (3, None)]

df = sqlContext.createDataFrame(sc.parallelize(data), schema)

# Create a column object storing the value you want in the NULL case
num_elements = 300
null_value = array([lit(0.0)] * num_elements)

# If you want a different type you can change it like this
# null_value = null_value.cast('array<float>')

# Keep the value when there is one, replace it when it's null
df2 = df.withColumn('f2', when(df['f2'].isNull(), null_value).otherwise(df['f2']))
Run Code Online (Sandbox Code Playgroud)