Vis*_*ram 5 python deep-learning tensorflow
看来,张量流中的L2正则化可以通过两种方式实现:
(i)使用tf.nn.l2_loss或(ii)使用tf.contrib.layers.l2_regularizer
这两种方法都可以达到同样的目的吗?如果它们不同,它们有什么不同?
他们做同样的事情(至少现在).唯一的区别是tf.contrib.layers.l2_regularizer
乘以tf.nn.l2_loss
by 的结果scale
.
看看tf.contrib.layers.l2_regularizer
[ https://github.com/tensorflow/tensorflow/blob/r1.1/tensorflow/contrib/layers/python/layers/regularizers.py]的实现:
def l2_regularizer(scale, scope=None):
"""Returns a function that can be used to apply L2 regularization to weights.
Small values of L2 can help prevent overfitting the training data.
Args:
scale: A scalar multiplier `Tensor`. 0.0 disables the regularizer.
scope: An optional scope name.
Returns:
A function with signature `l2(weights)` that applies L2 regularization.
Raises:
ValueError: If scale is negative or if scale is not a float.
"""
if isinstance(scale, numbers.Integral):
raise ValueError('scale cannot be an integer: %s' % (scale,))
if isinstance(scale, numbers.Real):
if scale < 0.:
raise ValueError('Setting a scale less than 0 on a regularizer: %g.' %
scale)
if scale == 0.:
logging.info('Scale of 0 disables regularizer.')
return lambda _: None
def l2(weights):
"""Applies l2 regularization to weights."""
with ops.name_scope(scope, 'l2_regularizer', [weights]) as name:
my_scale = ops.convert_to_tensor(scale,
dtype=weights.dtype.base_dtype,
name='scale')
return standard_ops.multiply(my_scale, nn.l2_loss(weights), name=name)
return l2
Run Code Online (Sandbox Code Playgroud)
您感兴趣的行是:
return standard_ops.multiply(my_scale, nn.l2_loss(weights), name=name)
Run Code Online (Sandbox Code Playgroud)
所以在实践中,内部tf.contrib.layers.l2_regularizer
调用tf.nn.l2_loss
简单地将结果乘以scale
参数.
归档时间: |
|
查看次数: |
1627 次 |
最近记录: |